JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, vol.35, no.1, 2021 (SCI-Expanded)
Contrary to the fact that doxorubicin is a powerful chemotherapeutic agent for the treatment of neoplastic diseases, cardiotoxicity is too important to be ignored. Thymoquinone serves as a powerful free radical scavenger. In the study, the effects of thymoquinone against doxorubicin-cardiotoxicity will be evaluated. Forty rats were divided into five groups. Group I: control group (n = 8); group II: olive oil group (n = 8); group III: thymoquinone group (n = 8); given 10 mg/kg thymoquinone intraperitoneally per day throughout the experiment; group IV: doxorubicin group (n = 8); injected with a single dose of 15 mg/kg ip doxorubicin on the 7th day of the experiment; group V: doxorubicin + thymoquinone group (n = 8); administered with 10 mg/kg thymoquinone per day during the experiment and 15 mg/kg doxorubicin ip on the 7th day. The experiment was planned for 14 days. Immunohistochemically, heat shock protein (HSP) 70 and HSP90, glucose-regulated protein 78 (GRP78), caspase-3 were stained. We made terminal deoxynucleotidyl transferase dUTP nick end labeling for apoptotic evaluation. Total oxidant status (TOS) levels and total antioxidant status (TAS) were measured in the heart tissue. Atrial natriuretic peptide (ANP) and pro-B type natriuretic peptide (proBNP) were evaluated. In the study, HSP70, HSP90, GRP78, and caspase-3 levels increased in group IV. TOS and TAS levels were significant compared to group I. Doxorubicin significantly increased ANP and NT-proBNP levels. Thymoquinone revealed significant differences in these values. Thymoquinone can be an important cardioprotective agent against doxorubicin-cardiotoxicity.