INTELLIGENT AUTOMATION AND SOFT COMPUTING, cilt.18, sa.3, ss.307-316, 2012 (SCI-Expanded)
Multiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) has received a great deal of attention of recently in achieving high data rate in wireless communication systems such as WIMAX. Channel estimation is, however, a critical issue for coherent demodulation. In this paper, a new channel estimator based on neural network with feedback for MIMO-OFDM mobile system is designed and its performance is compared to the least square error (LS), least mean square error (LMS), minimum mean square error (MMSE) algorithms and neural network without feedback by using computer simulations. Simulation results demonstrate that our proposed system is an effective solution to channel estimation in time varying fast fading channels without any knowledge of channel statistics and noise information.