Lacticaseibacillus paracasei AD22 Stress Response in Brined White Cheese Matrix: In Vitro Probiotic Profiles and Molecular Characterization

Creative Commons License


Probiotics and Antimicrobial Proteins, 2024 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2024
  • Doi Number: 10.1007/s12602-024-10216-4
  • Journal Name: Probiotics and Antimicrobial Proteins
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, CAB Abstracts, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Keywords: Cheese, L. paracasei, Probiotic, Stress factors, Whole genome sequence
  • Erciyes University Affiliated: Yes


Functionalizing foods involve discovering and integrating new candidate health-promoting bacteria into the food matrix. This study aimed (i) to reveal the probiotic potential of autochthonous Lacticaseibacillus paracasei AD22 by a series of in vitro tests and molecular characterization and (ii) to evaluate its application to the matrix of brined white cheese, which is the most common cheese in Türkiye, in terms of survival and stress response. To evaluate in vitro probiotic characteristics, L. paracasei AD22 was exposed to functional, technological, and safety tests. Pilot scale production was conducted to integrate L. paracasei AD22 into the brined white cheese matrix. The expression levels of stress-related genes (dnaK, groES, ftsH, argH, and hsp20) were detected by reverse-transcriptase polymerase chain reaction to determine the transcriptional stress response during ripening. The presence of genes encoding stress-related proteins was determined by whole-genome sequence analysis using a subsystem approach; the presence of antibiotic resistance and virulence genes was determined by ResFinder4.1 and VirulenceFinder 2.0 databases. The BAGEL4 database determined the presence of bacteriocin clusters. L. paracasei AD22 was found to survive in pH 2 and medium with 12% NaCl and did not cause hemolysis. Adhesion of the strain to Caco2 cells was 76.26 ± 4.81% and it had coaggregation/autoaggregation properties. It was determined that L. paracasei AD22 exceeded 7 log cfu/g in the cheese matrix at the end of the ripening period. Total mesophilic aerobes decreased in the cheese inoculated with L. paracasei AD22 after the 45th day of ripening. While hsp20 and groES genes were downregulated during ripening, argH was upregulated. Both downregulation and upregulation were observed in dnaK and ftsH. Fold changes indicating the expression levels of dnaK, groES, ftsH, argH, and hsp20 genes were not statistically significant during ripening (p > 0.05). Whole-genome sequence profiles revealed that the strain did not contain antibiotic and virulence genes but bacteriocin clusters encoding Enterolysin A (Class III bacteriocin), Carnosine CP52 (class II bacteriocin), Enterocin X beta chain (Class IIc bacteriocin), and the LanT region. Subsystems approach manifested that the most functional part of the genomic distribution belonged to metabolism, protein processing, and stress response functions. The study findings highlight that L. paracasei AD22 will provide biotechnological innovation as a probiotic adjunct because it contains tolerance factors and probiotic characteristics to produce new functional foods.