TOXICOLOGY AND INDUSTRIAL HEALTH, cilt.26, sa.5, ss.273-280, 2010 (SCI-Expanded)
Ionizing radiation is known to induce mutations and cell transformations, predominantly by causing single-strand and double-strand DNA breakage, thereby leading to chromosome instability and carcinogenesis. The aim of this study was to evaluate genotoxic effects in hospital staff exposed to low-dose ionizing radiation in comparison with a selected control group, by using the cytokinesis-blocked micronucleus (CBMN) and sister chromatid exchange (SCE) tests in peripheral blood lymphocytes. The study included 40 exposed radiology staff and 30 control subjects. The frequency of micronuclei (MN) was significantly increased in radiation-exposed groups compared with control persons (p < 0.05). The frequency of SCE did not show any significant difference in the exposed individuals in comparison to the controls. Our results showed that low-level chronic occupational exposure to ionizing radiation causes an increase of MN frequency in chromosomes, even though the absorbed doses were below the permissible limits. Our studies indicate that the CBMN assay is considered to be sensitive test in contrast to SCE analysis to evaluate chromosomal damage induced by ionizing radiation.