Macronutrient modulation of mRNA and microRNA function in animals: A review


Creative Commons License

Sohel M. M. H.

ANIMAL NUTRITION, cilt.6, ss.258-268, 2020 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 6
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/j.aninu.2020.06.002
  • Dergi Adı: ANIMAL NUTRITION
  • Sayfa Sayıları: ss.258-268

Özet

Dietary macronutrients have been regarded as a basic source of energy and amino acids that are necessary for the maintenance of cellular homeostasis, metabolic programming as well as protein synthesis. Due to the emergence of "nutrigenomics", a unique discipline that combines nutritional and omics technologies to study the impacts of nutrition on genomics, it is increasingly evident that macronutrients also have a significant role in the gene expression regulation. Gene expression is a complex phenomenon controlled by several signaling pathways and could be influenced by a wide variety of environmental and physiological factors. Dietary macronutrients are the most important environmental factor influencing the expression of both genes and microRNAs (miRNA). miRNA are tiny molecules of 18 to 22 nucleotides long that regulate the expression of genes. Therefore, dietary macronutrients can influence the expression of genes in both direct and indirect manners. Recent advancements in the state-of-the-art technologies regarding molecular genetics, such as next-generation sequencing, quantitative PCR array, and microarray, allowed us to investigate the occurrence of genome-wide changes in the expression of genes in relation to augmented or reduced dietary macronutrient intake. The purpose of this review is to accumulate the current knowledge focusing on macronutrient mediated changes in the gene function. This review will discuss the impact of altered dietary carbohydrate, protein, and fat intake on the expression of coding genes and their functions. In addition, it will also summarize the regulation of miRNA, both cellular and extracellular miRNA, expression modulated by dietary macronutrients. (C) 2020, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.