Deep Learning Based Apples Counting for Yield Forecast Using Proposed Flying Robotic System


YILDIRIM Ş., ULU B.

SENSORS, cilt.23, sa.13, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 23 Sayı: 13
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3390/s23136171
  • Dergi Adı: SENSORS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Communication Abstracts, Compendex, INSPEC, MEDLINE, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: deep learning, agricultural automation, aerial robotics, object detection, computer-vision
  • Erciyes Üniversitesi Adresli: Evet

Özet

Nowadays, Convolution Neural Network (CNN) based deep learning methods are widely used in detecting and classifying fruits from faults, color and size characteristics. In this study, two different neural network model estimators are employed to detect apples using the Single-Shot Multibox Detection (SSD) Mobilenet and Faster Region-CNN (Faster R-CNN) model architectures, with the custom dataset generated from the red apple species. Each neural network model is trained with created dataset using 4000 apple images. With the trained model, apples are detected and counted autonomously using the developed Flying Robotic System (FRS) in a commercially produced apple orchard. In this way, it is aimed that producers make accurate yield forecasts before commercial agreements. In this paper, SSD-Mobilenet and Faster R-CNN architecture models trained with COCO datasets referenced in many studies, and SSD-Mobilenet and Faster R-CNN models trained with a learning rate ranging from 0.015-0.04 using the custom dataset are compared experimentally in terms of performance. In the experiments implemented, it is observed that the accuracy rates of the proposed models increased to the level of 93%. Consequently, it has been observed that the Faster R-CNN model, which is developed, makes extremely successful determinations by lowering the loss value below 0.1.