A novel deep learning model with the Grey Wolf Optimization algorithm for cotton disease detection


Creative Commons License

Gülmez B.

JOURNAL OF UNIVERSAL COMPUTING SCIENCE, cilt.29, sa.6, ss.595-626, 2023 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 29 Sayı: 6
  • Basım Tarihi: 2023
  • Doi Numarası: 10.3897/jucs.94183
  • Dergi Adı: JOURNAL OF UNIVERSAL COMPUTING SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Directory of Open Access Journals
  • Sayfa Sayıları: ss.595-626
  • Anahtar Kelimeler: Convolutional neural networks, Deep learning, Artificial intelligence, Cotton disease detection, Grey wolf optimization algorithm
  • Açık Arşiv Koleksiyonu: AVESİS Açık Erişim Koleksiyonu
  • Erciyes Üniversitesi Adresli: Evet

Özet

Plants are a big part of the ecosystem. Plants are also used by humans for various purposes. Cotton is one of these important plants and is very critical for humans. Cotton production is one of the most important sources of income for many countries and farmers in the world. Cotton can get diseases like other plants and living things. Detecting these diseases is critical. In this study, a model is developed for disease detection from leaves of cotton. This model determines whether the cotton is healthy or diseased through the photograph. It is a deep convolutional neural network model. While establishing the model, care is taken to ensure that it is a problem-specific model. The grey wolf optimization algorithm is used to ensure that the model architecture is optimal. So, this algorithm will find the most efficient architecture. The proposed model has been compared with the ResNet50, VGG19, and InceptionV3 models that are frequently used in the literature. According to the results obtained, the proposed model has an accuracy value of 1.0. Other models had accuracy values of 0.726, 0.934, and 0.943, respectively. The proposed model is more successful than other models.