Qualitative Analysis of a Fractional Pandemic Spread Model of the Novel Coronavirus (COVID-19)

Yousef A., Bozkurt Yousef F. , Abdeljawad T.

Cmc-Computers Materials & Continua, cilt.66, ss.843-869, 2020 (SCI İndekslerine Giren Dergi)

  • Cilt numarası: 66 Konu: 1
  • Basım Tarihi: 2020
  • Dergi Adı: Cmc-Computers Materials & Continua
  • Sayfa Sayıları: ss.843-869


In this study, we classify the genera of COVID-19 and provide brief information about the root of the spread and the transmission from animal (natural host) to humans. We establish a model of fractional-order differential equations to discuss the spread of the infection from the natural host to the intermediate one, and from the intermediate one to the human host. At the same time, we focus on the potential spillover of bat-borne coronaviruses. We consider the local stability of the co-existing critical point of the model by using the Routh–Hurwitz Criteria. Moreover, we analyze the existence and uniqueness of the constructed initial value problem. We focus on the control parameters to decrease the outbreak from pandemic form to the epidemic by using both strong and weak Allee Effect at time t. Furthermore, the discretization process shows that the system undergoes Neimark–Sacker Bifurcation under specific conditions. Finally, we conduct a series of numerical simulations to enhance the theoretical findings.