Backward Locomotion as a Novel Strategy for Enhancing Obesity Management


Torun M. C., ÇELENK Ç., YILMAZ A., TURAN M. B., AKKURT S., TORUN S.

APPLIED SCIENCES-BASEL, cilt.15, sa.13, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 13
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/app15137099
  • Dergi Adı: APPLIED SCIENCES-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Agricultural & Environmental Science Database, Applied Science & Technology Source, Communication Abstracts, INSPEC, Metadex, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: obesity, backward locomotion, cardiorespiratory response, metabolic response, electromyography
  • Erciyes Üniversitesi Adresli: Evet

Özet

Obesity is associated with reduced cardiorespiratory fitness and altered metabolic responses. However, the acute effects of forward and backward locomotion training in individuals with a body mass index (BMI) >= 30 remain underexplored. This study investigated this population's cardiorespiratory, metabolic-perceptual, and muscle electromyography (EMG) responses to forward and backward locomotion at different speeds. Twenty-eight male participants were divided into four seven-member groups, following a randomized crossover design with a Latin Square-like counterbalancing approach. Participants completed four 10 min walking conditions (3 km/h forward, 3 km/h backward, 4 km/h forward, and 4 km/h backward) on separate days, with cardiorespiratory parameters (e.g., VO2, VCO2, and heart rate), metabolic responses (e.g., lactate and energy expenditure), and lower-limb muscle EMG activity measured. Statistical analysis using two-way repeated measures (MANOVA) revealed significant direction effects (p <0.05) on VO2, VCO2, heart rate, energy expenditure, Borg RPE, final lactate, and the EMG activity of quadriceps, hamstrings, and tibialis anterior, but not on pre-lactate or soleus activity (p > 0.05). These findings provide valuable insights for optimizing exercise programs in obese individuals, supporting tailored movement strategies to enhance physiological outcomes.