Photocatalytic assessed adsorptive removal of tinidazole from aqueous environment using reduced magnetic graphene oxide-bismuth oxychloride and its silver composite


Sohani S., Ara B., Khan H., Gul K., Khan M.

ENVIRONMENTAL RESEARCH, cilt.215, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 215
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.envres.2022.114262
  • Dergi Adı: ENVIRONMENTAL RESEARCH
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, CAB Abstracts, Chemical Abstracts Core, Communication Abstracts, Computer & Applied Sciences, EMBASE, Environment Index, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Tinidazole, Reduced graphene oxide, Metronidazole, Graphene oxide, Ornidazole, HIGHLY EFFICIENT, SOLAR-RADIATION, DEGRADATION, PERFORMANCE, AG, METRONIDAZOLE, MECHANISM, KINETICS, CHITOSAN
  • Erciyes Üniversitesi Adresli: Evet

Özet

Antibiotics (tinidazole (TNZ)) in wastewater, exhibit adverse effects on humans and ecosystem. The current study was aimed to synthesize photocatalysts mrGO/BiOCl and mrGO/BiOCl/Ag. mrGO was coupled with BiOCl by hydrothermal method and Ag was deposited over it. The synthesized mrGO/BiOCl and mrGO/BiOCl/Ag were confirmed by Pzc analysis (5.5 and 4.4 for mrGO/BiOCl and mrGO/BiOCl/Ag, respectively), surface area analysis (380 m2 g-1, 227.7 m2 g-1, 220 m2 g-1 for mrGO, mrGO/BiOCl and mrGO/BiOCl/Ag respectively), elemental analysis (Ag, O, Bi, Fe), surface morphology (rough ball like sphere of mrGO/BiOCl and cubic Ag nanoparticles in mrGO/BiOCl/Ag), functional groups and band gap (Eg) determination. The Eg was determined using KubelkaMunk equation as 3.5 and 2.8 eV for mrGO/BiOCl and mrGO/BiOCl/Ag respectively. During the adsorption study, the best experimental conditions for various operating parameters such as pH (2), contact time (5 min for mrGO/BiOCl and 10 min for mrGO/BiOCl/Ag under UV irradiation), TNZ concentration (18 mu gL-1) and catalyst dosage (0.001 g) were achieved. Kinetic study revealed that both composites followed pseudo second order kinetics (R2 = 0.9979 and 0.9986, respectively). Data of rGO/BiOCl was fitted to Freundlich adsorption model (R2 = 0.9687) and rGO/BiOCl/Ag fitted to Langmuir adsorption model (R2 = 0.9994). Moreover, thermodynamic parameters confirmed that a photodegradation phenomenon was spontaneous and exothermic. The results confirmed that rGO/BiOCl and rGO/BiOCl/Ag are appropriate composites for TNZ removal from the aqueous environment with removal efficiency of 97 and 24%, respectively.