Evaluation of polyaryletherketone materials as post-core abutments for removable partial dentures: A finite element analysis


YAĞCI F., ERASLAN R., ESİM E.

Dental Materials, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.dental.2024.10.011
  • Dergi Adı: Dental Materials
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Biotechnology Research Abstracts, Communication Abstracts, Compendex, EMBASE, INSPEC, MEDLINE, Metadex, Civil Engineering Abstracts
  • Anahtar Kelimeler: Clasp, Hybrid ceramic, Lithium disilicate, PEEK, PEKK, Post-core
  • Erciyes Üniversitesi Adresli: Evet

Özet

Objective: The purpose was to compare the biomechanical behavior of single-piece post-core restorations made from polyaryletherketone materials with fiber post-core restorations when serving as abutments for RPD using finite element analysis (FEA). Methods: Phantom maxillary central incisor and mandibular second premolar were trimmed 1-mm coronally to cemento-enamel junction; root canals were enlarged and the teeth were scanned. Data was transferred to a solid modeling software.Twenty four models, including six post-core restorations:glass-fiber post/composite core (GFH/GFL) and single-piece post-core groups as, PEKK(PKH/PKL);Ti02-reinforced PEEK(TH/TL);ceramic reinforced PEEK(CeH/CeL);carbon fiber reinforced PEEK(CaH/CaL);glass fiber reinforced PEEK(GFPH/GFPL) with hybrid ceramic/lithium disilicate crowns on each tooth were constructed.Loads of 100 N for central incisor, and 300 N for premolar in a 45°oblique direction were applied to simulate masticatory forces. Clasp removal force of a RPD was simulated as 5 N vertically.FEA was employed to evaluate the von Mises stresses.Strain at cement layer was also investigated. Results: CaH/CaL groups revealed the lowest stress for both teeth at root while TH/TL groups revealed the highest stress. The lowest stress values in the post-core were in GFH/GFL groups while the highest stress occurred in the CaH/CaL groups for both teeth. Significance: Glass-fiber post-cores exhibited the lowest stresses in the post under masticatory and clasp removal forces. It may suggest a potentially lower risk of post fracture compared to polyaryletherketone group materials. TiO2-reinforced PEEK post-cores exhibited the lowest stresses among PAEK materials, indicating a potentially high fracture resistance.