Spectra generated by a non-central generalized Kratzer potential and explicit expressions for expectation values of rs in N-dimensions


Durmus A.

European Journal of Physics, cilt.36, sa.5, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 36 Sayı: 5
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1088/0143-0807/36/5/055050
  • Dergi Adı: European Journal of Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: non-central generalized Kratzer potential, hyperspherical coordinates, asymptotic iteration method, QUANTUM-MECHANICAL OSCILLATOR, ASYMPTOTIC ITERATION METHOD, ORBITAL ANGULAR MOMENTUM, NIKIFOROV-UVAROV METHOD, KLEIN-GORDON EQUATION, MATRIX-ELEMENTS, WAVE-FUNCTIONS, DEGENERATE OSCILLATOR, SCHRODINGER-EQUATION, RECURRENCE RELATIONS
  • Erciyes Üniversitesi Adresli: Evet

Özet

© 2015 IOP Publishing Ltd.Analytical solutions of the N-dimensional non-relativistic wave equation with the non-central generalized Kratzer potential with arbitrary angular momentum have been investigated within the framework of the asymptotic iteration method. In hyperspherical coordinates, the normalized wave functions for rovibrational states are obtained in terms of generalized Laguerre and Gegenbauer polynomials. We have also derived the recurrence formulas and the radial expectation values of the reduced internuclear distances in N-dimensions. Rovibrational expectation values 〈 nl|(r/re)s|nl〉. are given for -3 ≤ s ≤ 3.