Flow-induced vibrations of low aspect ratio rectangular membrane wings


Rojratsirikul P., Genc M. S., Wang Z., Gursul I.

Journal of Fluids and Structures, vol.27, no.8, pp.1296-1309, 2011 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 27 Issue: 8
  • Publication Date: 2011
  • Doi Number: 10.1016/j.jfluidstructs.2011.06.007
  • Journal Name: Journal of Fluids and Structures
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1296-1309
  • Keywords: Membrane, Vortices, Vortex shedding, MICRO AIR VEHICLES, LOW-REYNOLDS-NUMBERS, AERODYNAMIC COEFFICIENTS, FLAT-PLATE, AIRFOIL, MODEL
  • Erciyes University Affiliated: Yes

Abstract

An experimental study of a low aspect ratio rectangular membrane wing in a wind tunnel was conducted for a Reynolds number range of 2.4×104-4.8×104. Time-accurate measurements of membrane deformation were combined with the flow field measurements. Analysis of the fluctuating deformation reveals chordwise and spanwise modes, which are due to the shedding of leading-edge vortices as well as tip vortices. At higher angles of attack, the second mode in the chordwise direction becomes dominant as the vortex shedding takes place. The dominant frequencies of the membrane vibrations are similar to those of two-dimensional membrane airfoils. Measured frequency of vortex shedding from the low aspect ratio rigid wing suggests that membrane vibrations occur at the natural frequencies close to the harmonics of the wake instabilities. Vortex shedding frequency from rigid wings shows remarkably small effect of aspect ratio even when it is as low as unity. © 2011 Elsevier Ltd.