The bimodal random crystal field and biquadratic exchange interaction effects for the spin-3/2 Ising model on the Bethe lattice


KARIMOU M., ALBAYRAK E. , TESSILIMY A., HONTINFINDE F., YESSOUFOU R.

CHINESE JOURNAL OF PHYSICS, vol.55, no.6, pp.2371-2383, 2017 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 55 Issue: 6
  • Publication Date: 2017
  • Doi Number: 10.1016/j.cjph.2017.10.005
  • Title of Journal : CHINESE JOURNAL OF PHYSICS
  • Page Numbers: pp.2371-2383
  • Keywords: Spin-3/2, Randomness, BEG model, Tricritical, Bimodal, Bethe lattice, EMERY-GRIFFITHS MODEL, BLUME-CAPEL MODEL, RECURSION METHOD, PHASE-DIAGRAMS, BEG MODEL, COOPERATIVE PHENOMENA, RENORMALIZATION-GROUP, MAGNETIC-PROPERTIES, TRANSITIONS

Abstract

The phase transition properties of Blume-Emery-Griffiths (BEG) model for the spin-3/2 system are investigated on the Bethe lattice (BL) when the system is under the effect of both random crystal field (D) and biquadratic exchange interaction (K). These randomization effects are either turned on with probability 1 - p (q) or turned off with probability p (1 - q) for D and K, respectively. The phase diagrams are obtained on the (K/J, kT/J) and (D/J, kT/J) planes for given values of p and q when z = 3.0 corresponding to honeycomb lattice. Both attractive (K> 0) and repulsive (K< 0) biquadratic exchange interaction values are considered to examine its effects on the BL. It is found that the model presents either second-or first-order phase transitions and also tricritical points. It is also found that the second-order phase lines follow the phase lines of regular spin-3/2 BEG model as K -> +/- infinity for the phase diagrams on the (K/J, kT/J) planes.