Journal of Materials Science, cilt.60, sa.42, ss.20396-20405, 2025 (SCI-Expanded, Scopus)
In this work, we report a simple and cost-effective method for improving both the environmental stability and photoluminescence quantum efficiency (PLQY) of perovskite nanocrystals (PNCs). Through their embedding in a specially designed macroporous polydimethylsiloxane (MPDMS) matrix and incorporation of plasmonic gold nanoparticles (Au NPs), remarkable improvements are achieved. The resulting MPDMS@PNC composites are seen to retain near-unity quantum efficiency even after 24-h immersion in water and are observed to retain over 85% of the original efficiency even at 75 °C, displaying excellent thermal stability. More interestingly, by incorporating Au NPs and subjecting the material to mechanical pressure, the lifetime of the PNCs gets further increased. This is due to the more intimate spatial arrangement of Au NPs in the porous matrix, enhancing localized surface plasmon resonance (LSPR) coupling and thereby enhancing the photoluminescence (PL) of the PNCs. In general, this approach offers a scalable and robust route to designing stable, high-performance perovskite-based materials for next-generation optoelectronic applications.