CONTINUUM MECHANICS AND THERMODYNAMICS, vol.25, no.6, pp.691-704, 2013 (SCI-Expanded)
The variations of thermal conductivities of solid phases versus temperature for pure Sn, pure Zn and Sn-9 wt.% Zn, Sn-14 wt.% Zn, Sn-50 wt.% Zn, Sn-80 wt.% Zn binary alloys were measured with a radial heat flow apparatus. The thermal conductivity ratios of liquid phase to solid phase for the pure Sn, pure Zn and eutectic Sn-9 wt.% Zn alloy at their melting temperature are found with a Bridgman-type directional solidification apparatus. Thus, the thermal conductivities of liquid phases for pure Sn, pure Zn and eutectic Sn-9 wt.% Zn binary alloy at their melting temperature were evaluated by using the values of solid phase thermal conductivities and the thermal conductivity ratios of liquid phase to solid phase.