Madde Tanıma Sistemlerinde Makine Öğrenmesi Metotlarının Kullanımı


Dal E. K., Kılıç R.

Journal of Computer Science, sa.IDAP-2023, ss.198-205, 2023 (Hakemli Dergi)

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2023
  • Doi Numarası: 10.53070/bbd.1347436
  • Dergi Adı: Journal of Computer Science
  • Derginin Tarandığı İndeksler: Other Indexes
  • Sayfa Sayıları: ss.198-205
  • Erciyes Üniversitesi Adresli: Evet

Özet

Maddelerin cinsinin tayin edilmesi, mevcut maddeye karışan kimyasalların ve partiküllerin tespiti insan sağlığı açısından önemlidir. Tespitler hastalanan insanların şikâyeti sonrasında ya da periyodik aralıklarla yapılan denetimler ile anlaşılabilmektedir. Bunun nedeni bu tür sistemlerin teknik kişilerce değerlendirilmesinin gerekmesinden ve günlük değerlendirilebilecek numunelerin kısıtlı sayıda olmasından kaynaklanmaktadır. Makine öğrenmesi ile eğitilmiş olan sistemler bu değerlendirmeleri gerçek zamanlı sistemlere yakın sürelerde, yüksek doğrulukla gerçekleştirebilmektedir. Makine öğrenmesi kullanan sistemlerde kabul edilebilir ve kabul edilemez olan numuneler ile ağ yapısı eğitilerek oluşabilecek numunedeki farklılıklar otonom olarak sınıflandırılarak değerlendirilebilmektedir. Böylece uzman kişilerin ufak değişimleri gözden kaçırma ihtimali azalırken, daha fazla sayıda numune değerlendirilebilmektedir. Optik sistemler ile yapılan tespitler hem partikül incelemesi açısından hem de çözünmüş madde açısından incelemeye olanak sağlamaktadır. Ayrıca tahribatsız inceleme yapısı ile şeffaf tüp, şeffaf boru, spektrofotometre küveti gibi alternatif ortamlarda ölçümler alınabilmekte, bu da esnek kullanım imkânı sunmaktadır. Yaptığımız çalışmalarda sütün kompleks yapısındaki farklılıklar ve su içerisindeki mikroplastiklerin optik sistemler kullanarak sınıflandırması yapılmıştır. Yapılan deneylerin sınıflandırılmasında yapay sinir ağlarından ve derin öğrenme algoritmalarından faydalanılmıştır. Bu algoritmaların madde tayini açısından yüksek doğruluk gösterdiği görülmüştür.