ACS OMEGA, vol.10, no.10, pp.9824-9853, 2025 (SCI-Expanded)
Polymer electrolyte membrane water electrolyzers have significant advantages over other electrolyzers, such as compact design, high efficiency, low gas permeability, fast response, high-pressure operation (up to 200 bar), low operating temperature (20-80 degrees C), lower power consumption, and high current density. Moreover, polymer electrolyte membrane water electrolyzers are a promising technology for sustainable hydrogen production due to their easy adaptability to renewable energy sources. However, the cost of expensive electrocatalysts and other construction equipment must be reduced for the widespread usage of polymer electrolyte membrane water electrolyzer technology. In this review, recent improvements made in developing the polymer electrolyte membrane water electrolyzer stack are summarized. First, we present a brief overview of the working principle of polymer electrolyte membrane water electrolyzers. Then, we discuss the components of polymer electrolyte membrane water electrolyzers (base materials such as membranes, gas diffusion layers, electrocatalysts, and bipolar plates) and their particular functions. We also provide an overview of polymer electrolyte membrane water electrolyzer's material technology, production technology, and commercialization issues. We finally present recent advancements of polymer electrolyte membrane water electrolyzer stack developments and their recent developments under different operating conditions.