PHYTON-INTERNATIONAL JOURNAL OF EXPERIMENTAL BOTANY, vol.89, no.2, pp.303-314, 2020 (SCI-Expanded)
Forty-four V. dahliae isolates were collected from symptomatic vascular tissues of okra plants each from a different field in eight provinces located in the eastern Mediterranean and western Anatolia regions of Turkey during 20062009. Nitrate-nonutilizing (nit) mutants of V. dahliae from okra were used to determine heterokaryosis and genetic relatedness among isolates. All isolates from okra plants were grouped into two vegetative compatibility groups (VCGs) (1 and 2) and three subgroups as 1A (13.6%, 6/44), 2A (20.5%, 9/44) and 2B (65.9%, 29/44) according to international criteria. Pathogenicity tests were performed on a susceptible local okra (A. esculentus) landrace in greenhouse conditions. All isolates from VCG1A and VCG2B induced defoliation (D) and partial defoliation (PD) symptoms, respectively. Other isolates from VCG2A gave rise to typical leaf chlorosis symptoms without defoliation. The obtained data showed that the virulence level of V. dahliae isolates from okra was related to their VCG belongings. Eighteen okra landraces from diverse geographical origins were screened for resistance to VCG2B and VCG1A of V. dahliae. The results indicated that all landraces were more susceptible to highly virulent VCG1A-D pathotype displaying D or PD symptoms depending on their susceptibility levels with a mean disease severity index of 3.52 than to less virulent VCG2B-PD pathotype of V dahliae displaying PD and ND symptoms with a mean disease severity index of 2.52. Significant differences were observed among the landraces; however, none of them exhibited a level of resistance. Okra landraces; corum, Hatay Has and Sanhurfa displayed the lowest level of susceptibility or little tolerance to both D and PD pathotypes. VCG2B of PD was prevailing in the surveyed areas and VCG1A of D was the most virulent of the VCGs identified. Introduction of resistant genotypes to Turkish okra germplasm from different sources and breeding new resistant okra cultivars are critical for the sustainability of okra production.