Investigation of a novel Defatted Spent Coffee Ground (DSCG)-supported Ni catalyst for fuel cell and supercapacitor applications


Hansu T. A., Al-Samaraae R., Atelge M., Kaya M., Kıvrak H. D., Bogrekcı I., ...Daha Fazla

Process Safety and Environmental Protection, cilt.191, ss.760-768, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 191
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.psep.2024.08.093
  • Dergi Adı: Process Safety and Environmental Protection
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Environment Index, Food Science & Technology Abstracts, Greenfile, INSPEC, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.760-768
  • Anahtar Kelimeler: DSCG, Electrocatalyst, Electrooxidation, Supercapacitor
  • Erciyes Üniversitesi Adresli: Evet

Özet

With the increase in energy demand, a material that can be used in fuel cell applications has been developed for both energy storage and the use of alternative energy sources to fossil fuels. In this study, a new Defatted Spent Coffee Ground (DSCG)-based electrode material was synthesized for two different application areas. A new electrocatalyst synthesis was carried out by subjecting DSCG to chemical activation and carbonization processes. The glycerol electrooxidation performances of the catalysts synthesized at 10–50 % Ni loading rates were investigated by CV measurements. 30 % Ni-DSCG catalyst exhibited the highest catalytic activity with 3.290 mA/cm2.As a result of the electrochemical measurements, 30 % Ni-DSCG catalyst with the best catalytic performance was used as the supercapacitor electrode material. The electrochemical performances of the produced supercapacitor electrodes were tested at room temperature using galvanostatic charge-discharge (GCD), Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques, and the capacity and stability of the electrodes were calculated as a result of the findings. In the calculations, the energy and power density of the 30 % Ni-DSCG supercapacitor electrode were calculated as 22.897 Wh kg−1, 841.114 W kg−1, respectively. The supercapacitor electrode capacitance was found to be 50.48 F/g. Its cyclic capacity was found to be 90 %. It showed that the DSCG-based synthesized electrocatalyst could be a good option for energy storage technology as EDLC electrode material and fuel cell applications as anode catalyst due to its good conductivity, superior cyclic stability, environmental friendliness and low cost.