Therapeutic potential of hesperidin: Apoptosis induction in breast cancer cell lines


Önder G. Ö., Göktepe Ö., Baran M., Bitgen N., Aydin F., Yay A. H.

FOOD AND CHEMICAL TOXICOLOGY, cilt.176, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 176
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.fct.2023.113791
  • Dergi Adı: FOOD AND CHEMICAL TOXICOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, EMBASE, Environment Index, Food Science & Technology Abstracts, Pollution Abstracts, Veterinary Science Database
  • Anahtar Kelimeler: Apoptosis, Hesperidin, MCF-7, MDA-MB-231
  • Erciyes Üniversitesi Adresli: Evet

Özet

Hesperidin is a flavonoid commonly found in citrus fruits. Studies have shown that hesperidin has anti-inflammatory, analgesic, and antimicrobial properties, as well as its effectiveness in carcinogenesis. In this paper, we aim to investigate the molecular mechanisms of hesperidin-induced apoptosis in MCF-7 and MDA-MB-231 cancer cells.The inhibitory effect of hesperidin on cellular proliferation was evaluated with the MTT assay. Cell cycle analysis of hesperidin-treated cells was then performed, as well as immunocytochemical analysis of the effect on the apoptosis pathway (TUNEL, Bax, and Bcl-2 expression).Moreover, hesperidin induced cellular apoptosis in MCF-7 breast cancer cells by inhibiting Bcl-2 and enhancing Bax expression at protein levels. On the other hand, hesperidin caused apoptosis in the MDA-MB-231 breast cancer cell line, but it did not activate the Bax/Bcl-2 pathway. Hesperidin also induced cell cycle arrest at the S phase in the MCF-7 and MDA-MB-231 cell lines.These findings showed that hesperidin is a potential therapeutic candidate for preventing the progression of breast cancer. In addition, hesperidin could significantly stimulate the death mechanisms in ER/PR (+) MCF-7 cells by changing the expression balance of Bax and Bcl-2 proteins, but lead ER/PR (-) MDA-MB-231 breast cancer cells to apoptosis in a different way.