Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, cilt.308, ss.123719, 2023 (SCI-Expanded)
The current study's objective was to investigate how an antifungal pesticide Azoxystrobin (AZO) interacts with bovine serum albumin (BSA) under conditions that simulate a physiological medium (pH 7.4). This investigation was carried out using various experimental (UV-Vis absorption, steady-state fluorescence and 3-D fluorescence spectroscopies, and electrochemical) and theoretical (molecular docking and molecular dynamics simulations) methods. The fluorescence quenching data demonstrated that AZO caused fluorescence quenching in BSA, and this quenching process was attributed to the static quenching mechanism. By examining the fluorescence quenching of BSA at three different temperatures, it was determined that the binding constants for the AZO-BSA complexes were approximately 104 M 1 in magnitude, while the same magnitude of the binding constant was found by the electrochemical method. This indicates that the interaction between AZO and BSA was of moderate strength. This was further validated by the changes observed in the UV-Vis spectrum of BSA following the addition of AZO. The thermodynamic information, including Delta H and Delta S, revealed that the interaction forces primarily involved van der Waals forces as well as hydrogen bonds. The negative Gibbs free energy indicated that the reaction is spontaneous. In the theoretical investigation, the comparison highlights a remarkable consistency in how AZO interacts with the BSA active site over various time points. Hydrogen bonding and hydrophobic interactions consistently play a role in ensuring the stable and specific binding of the ligand. Moreover, the 3-D fluorescence spectral findings revealed alterations in the surrounding microenvironment of protein fluorophores when AZO binds. Upon analyzing the electrochemical data, it was observed that there was a consistent decrease in the peak currents of AZO when BSA was added to solutions containing AZO. The primary cause of this decrease in the peak currents was the reduction in the equilibrium concentration of AZO due to the addition of BSA. Furthermore, the formation of a non-electroactive complex between BSA and AZO, which impedes electron transport between AZO and the working electrode, accounts for these decreases. As a result, it can be said that the understanding of how AZO binds to BSA offers valuable insights that can be applied in the food, human health, and environment sectors.