Training a learning vector quantization network using the pattern electroretinography signals


KARA S., Guven A.

COMPUTERS IN BIOLOGY AND MEDICINE, cilt.37, sa.1, ss.77-82, 2007 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 1
  • Basım Tarihi: 2007
  • Doi Numarası: 10.1016/j.compbiomed.2005.10.005
  • Dergi Adı: COMPUTERS IN BIOLOGY AND MEDICINE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.77-82
  • Erciyes Üniversitesi Adresli: Evet

Özet

In this study, the pattern electroretinography (PERG) signals derived from evoked potential across retinal cells of subjects after visual stimulation were analyzed using artificial neural network (ANN) with 172 healthy and 148 diseased subjects. ANN was employed to PERG signals to distinguish between healthy eye and diseased eye. Supervised network examined was a competitive learning vector quantization network. The designed classification structure has about 94% sensitivity, 90.32% specifity, 5.94% false negative, 9.67% false positive and correct classification is calculated to be 92%. Testing results were found to be compliant with the expected results that are derived from the physician's direct diagnosis. The end benefit would be to assist the physician to make the final decision without hesitation. (c) 2005 Elsevier Ltd. All rights reserved.