JOURNAL OF EXPERIMENTAL MEDICINE, cilt.220, sa.2, 2023 (SCI-Expanded)
Inherited CARMIL2 deficiency underlies infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation. CARMIL2 deficiency impairs CD28 signaling only partially in T cells. The comparison of CARMIL2 and CD28 deficiency in humans suggests that CARMIL2 governs immunological pathways beyond CD28. Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-kappa B but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4(+) and CD8(+) memory T cells and CD4(+) T(REG)s. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4(+) T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.