Synthesis, Molecular Docking, and DFT Studies of Some New 2,5-Disubstituted Benzoxazoles as Potential Antimicrobial and Cytotoxic Agents


EROL M. , ÇELİK İ. , UZUNHİSARCIKLI E. , Kuyucuklu G.

POLYCYCLIC AROMATIC COMPOUNDS, 2020 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2020
  • Doi Number: 10.1080/10406638.2020.1802305
  • Title of Journal : POLYCYCLIC AROMATIC COMPOUNDS
  • Keywords: ADME prediction, antimicrobial activity, benzoxazole, cytotoxicity, molecular docking, RAPID COLORIMETRIC ASSAY, DERIVATIVES, ANTICANCER, RESISTANCE, BENZIMIDAZOLES, MECHANISMS, SURVIVAL, GROWTH

Abstract

In this study, a total of 17 piece 2,5-disubstituted benzoxazole derivatives were synthesized, 2 of which were not original, their antimicrobial activities were determined using microdilution method and theirin vitrocytotoxic activities were investigated on MCF-7 and A549 cells by MTT test. When the activity results are examined, although the antibacterial effects of benzoxazole derivatives are weaker than standard drugs;3N13and3N19againstCandida albicansisolate showed the closest activity to fluconazole with MIC: 16 mu g/ml. The cytotoxicity test was measured at a concentration of 100 mu M and a 24-h incubation period. The results showed that the compounds had weak activities against two cell lines. Molecular docking studies of synthesized compounds were performed on sterol 14 alpha-demethylase protein (CYP51) and protein-ligand interactions of3N13, the most effective derivative againstC. albicansisolate, were showed (PDB: 5TZ1). Estimated ADME profiles of compounds were calculated and also3N13's were calculated HUMO-LUMO energies, molecular electrostatic potential analysis, and geometric optimization parameters with 6-311 G+ (d,p) base set using DFT/B3LYP theory, and the results were displayed.