Deleterious variants in the autophagy-related gene RB1CC1/FIP200 impair immunity to SARS-CoV-2


Hu L., van der Sluis R. M., Castelino K. B., Zhang B., Ronit A., Zillinger T., ...Daha Fazla

Nature Communications, cilt.16, sa.1, 2025 (SCI-Expanded, Scopus) identifier identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 16 Sayı: 1
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1038/s41467-025-65308-8
  • Dergi Adı: Nature Communications
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Chemical Abstracts Core, EMBASE, Geobase, INSPEC, MEDLINE, Directory of Open Access Journals, Nature Index
  • Erciyes Üniversitesi Adresli: Evet

Özet

The clinical outcome of SARS-CoV-2 infection spans from asymptomatic viral elimination to lethal COVID-19 pneumonia, which is due to type I interferon (IFN) deficiency in at least 15–20% of cases. We report two unrelated male patients with critical COVID-19 who are heterozygous for rare deleterious variants in RB1CC1, encoding the autophagy-related FIP200 protein. Airway epithelial cells genetically deprived of FIP200 or cell lines expressing the RB1CC1/FIP200 patient variants exhibit elevated SARS-CoV-2 replication and impaired autophagic flux. The antiviral function of FIP200 is independent of canonical autophagy and type I IFN, but involves the selective autophagy receptor NDP52. We identify a non-canonical function of FIP200 in a novel lysosomal degradation pathway, in which SARS-CoV-2 virions are targeted to single-membrane compartments for degradation of viral RNA in LC3B-positive acidified vesicles. This pathway is impaired in FIP200-deficient cells and in cells expressing FIP200 patient haplotypes. Collectively, we describe a cell-autonomous anti-SARS-CoV-2 restriction pathway, dependent on FIP200 and NDP52, and independent of canonical autophagy and type I IFN, which can underlie critical COVID-19 pneumonia.