Effects of random particle dispersion and size on the indentation behavior of SiC particle reinforced metal matrix composites

EKİCİ R. , APALAK M. K. , Yildirim M., NAİR F.

MATERIALS & DESIGN, vol.31, no.6, pp.2818-2833, 2010 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 31 Issue: 6
  • Publication Date: 2010
  • Doi Number: 10.1016/j.matdes.2010.01.001
  • Title of Journal : MATERIALS & DESIGN
  • Page Numbers: pp.2818-2833
  • Keywords: Metal matrix composites, Non-linear behavior, Finite element analysis, Scanning electron microscopy, Powder processing, MICRO-INDENTATION, AGING BEHAVIOR, ALUMINUM, TENSILE, 6061-ALUMINUM, STRENGTH, HARDNESS


This study investigates the effects of particle size, volume fraction, random dispersion and local concentration underneath a spherical indenter on the indentation response of particle reinforced metal matrix Al 1080/SiC composites. The ceramic particles in certain sizes and volume fractions were randomly distributed through the composite structure in order to achieve a similar structure to an actual microstructure as possible. The particle size and volume fraction affected considerably indentation depths and deformed indentation surface profiles. The indentation depth increases with increasing particle size, but decreases with increasing particle volume fraction. The experimental indentation depths were in agreement with numerical indentation depths in case the local particle concentration effect is considered. The local particle concentration plays an important role on the peak indentation depth. For small particle sizes and large volume fractions the random particle distribution affects the deformed surface profiles as well as the indentation depths. However, its effect is minor on residual stress and strain distributions rather than levels in the indentation region. (C) 2010 Elsevier Ltd. All rights reserved.