Zero-dimensional single zone engine modeling of an SI engine fuelled with methane and methane-hydrogen blend using single and double Wiebe Function: A comparative study

Yildiz M. , Ceper B.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, cilt.42, ss.25756-25765, 2017 (SCI İndekslerine Giren Dergi) identifier

  • Cilt numarası: 42 Konu: 40
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1016/j.ijhydene.2017.07.016
  • Sayfa Sayıları: ss.25756-25765


Combustion modeling plays a key role in an engine simulation to predict in-cylinder pressure development and engine performance with a high level accuracy. Wiebe function, representing mass fraction burned (MFB) as a function of crank angle position, is widely used to predict the combustion process. The work presents a predictive zero dimensional (Zero-D) single zone engine modeling of an SI engine fuelled with methane and methane-hydrogen blend. In this work, the single and double forms of Wiebe function were used to estimate the combustion process in the modeling. For this purpose, the single and double-Wiebe functions' parameters were calculated using the least squares method by fitting to the MFB curves calculated from experimental pressure data. These Wiebe functions were, then, introduced to the Zero-D single zone engine model developed for the methane and methane-hydrogen blend fueled SI engine to obtain in-cylinder pressure development and gross indicated mean effective pressure (GIMEP) for the engine performance prediction. The results show that the model with double-Wiebe Function fit better than that with single-Wiebe function. In addition, the fitted double-Wiebe function has a significant improvement in the GIMEP prediction for methane-hydrogen blend fueled SI engine modeling rather than the methane-fueled modeling. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.