PreT (2) Objects in Topological Categories


BARAN M.

APPLIED CATEGORICAL STRUCTURES, cilt.17, sa.6, ss.591-602, 2009 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 6
  • Basım Tarihi: 2009
  • Doi Numarası: 10.1007/s10485-008-9161-4
  • Dergi Adı: APPLIED CATEGORICAL STRUCTURES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.591-602
  • Erciyes Üniversitesi Adresli: Evet

Özet

In previous papers, two notions of pre-Hausdorff (PreT (2)) objects in a topological category were introduced and compared. The main objective of this paper is to show that the full subcategory of PreT (2) objects is a topological category and all of T (0), T (1), and T (2) objects in this topological category are equivalent. Furthermore, the characterizations of pre-Hausdorff objects in the categories of filter convergence spaces, (constant) local filter convergence spaces, and (constant) stack convergence spaces are given and as a consequence, it is shown that these categories are homotopically trivial.