Hydrogen production potential of APEX fusion transmuter fueled minor actinide fluoride


Genc G.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, cilt.35, sa.19, ss.10190-10201, 2010 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35 Sayı: 19
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1016/j.ijhydene.2010.07.134
  • Dergi Adı: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.10190-10201
  • Anahtar Kelimeler: Hydrogen production, Steam-methane reforming, Water Splitting, Sulfur-Iodine cycle, High temperature electrolysis, Minor actinide transmutation, PROTECTIVE LIQUID WALL, NEUTRONIC PERFORMANCE, NUCLEAR-ENERGY, CONCEPTUAL DESIGN, MOLTEN-SALTS, REACTOR, PLANT, STEAM, SYSTEM, PLUTONIUM
  • Erciyes Üniversitesi Adresli: Evet

Özet

Main aim of this study is to investigate hydrogen production potential of Advanced Power EXtraction (APEX) fusion reactor cooled with the molten-salt mixtures, as well as its neutronic performance to transmute minor actinides (MAs). In the original APEX reactor concept, fusion power (P-f) is quite high (4000 MW), and the FLiBe molten-salt flows as molten-salt wall. The FLiBe molten-salt is mixed with molten minor actinide tetra fluoride salt (MAF(4)) to transmute minor actinides, and at the same time, to increase the energy multiplication. In addition to this mixture of FLiBe and MAF(4), FLiNaBe, LiF and Eutectic Lithium instead of FLiBe are mixed individually with MAF(4), and are used as the molten-salt coolant. Furthermore, two different compositions of MA nuclides are considered as follows: (i) The MA nuclides discharged from the pressured water reactor (PWR)-MOX spent fuel and (ii) The MA nuclides discharged from the PWR-UO2 spent fuel. The neutronic analyses have been performed for these eight different molten-salt mixture cases and for both one and three-dimensional geometry models by using the XSDRNPM/SCALE4.4a neutron transport code and the MCNP4B code, respectively.