INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, cilt.26, sa.21, 2025 (SCI-Expanded, Scopus)
Formaldehyde (FA) is commonly used for hatchery disinfection, where it reduces microbial growth, ensures successful egg hatch and enhances healthy production, but its specific effects on embryonic development remain unclear. MicroRNAs (miRNAs) regulate gene expression post-transcriptionally and may mediate FA-induced transcriptional responses. Here, we investigated the impact of FA treatment on miRNA profiles in chicken embryo liver. Small RNA-seq libraries were constructed and sequenced using the Illumina NextSeq platform. Reads were trimmed and quantified using miRDeep2 version 2.0.0.3. Differential expression analysis was performed with DESeq2 (p-adjusted < 0.05 and |log(2)FC| > 1). Target genes of differentially expressed miRNAs (DEMs) were predicted with miRDB, and GO/KEGG/Reactome enrichment was conducted. Out of 662 total mature miRNAs detected, differential expression analysis identified 30 DEMs (11 up-regulated, 19 down-regulated). The highest fold increase was determined for gga-miR-3533 (log(2)FC = 4.45), and the most significant decrease was determined for gga-miR-133b (log(2)FC = -3.38). Pathway analysis revealed miRNAs affecting signaling pathways along with modules related to post-translational protein modification, immune system, and oxidative stress pathways. Our study demonstrates that FA treatment can affect critical biological processes by altering miRNA-mediated regulation in the developing embryonic liver and point to the need for functional validation of miRNA-target interactions to help determine mechanisms for FA benefits. Long term, these data may help serve as reference to identify new treatments with optimized response profiles.