Experimental Investigation of Communication Performance of Drones Used for Autonomous Car Track Tests

Creative Commons License

Yildiz M., Bilgic B., Kale U., Rohacs D.

SUSTAINABILITY, vol.13, no.10, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 13 Issue: 10
  • Publication Date: 2021
  • Doi Number: 10.3390/su13105602
  • Journal Name: SUSTAINABILITY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aerospace Database, CAB Abstracts, Communication Abstracts, Food Science & Technology Abstracts, Geobase, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Keywords: autonomous vehicles, V2V, car test data collection, connected vehicle, sustainability, V2I COMMUNICATION, VEHICLE, ARCHITECTURE, NETWORKS, FOREST, SYSTEM
  • Erciyes University Affiliated: Yes


Autonomous Vehicles (AVs) represent an emerging and disruptive technology that provides a great opportunity for future transport not only to have a positive social and environmental impact but also traffic safety. AV use in daily life has been extensively studied in the literature in various dimensions, however; it is time for AVs to go further which is another technological aspect of communication. Vehicle-to-Vehicle (V2V) technology is an emerging issue that is expected to be a mutual part of AVs and transportation safety in the near future. V2V is widely discussed by its deployment possibilities not only by means of communication, even to be used as an energy transfer medium. ZalaZONE Proving Ground is a 265-hectare high-tech test track for conventional, electric as well as connected, assisted, and automated vehicles. This paper investigates the use of drones for tracking the cars on the test track. The drones are planned to work as an uplink for the data collected by the onboard sensors of the car. The car is expected to communicate with the drone which is flying in coordination. For the communication 868 MHz is selected to be used between the car and the drone. The test is performed to simulate different flight altitudes of drones. The signal strength of the communication is analyzed, and a model is developed which can be used for the future planning of the test track applications.