Reinforcement learning approaches for specifying ordering policies of perishable inventory systems


KARA A., DOĞAN I.

EXPERT SYSTEMS WITH APPLICATIONS, cilt.91, ss.150-158, 2018 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 91
  • Basım Tarihi: 2018
  • Doi Numarası: 10.1016/j.eswa.2017.08.046
  • Dergi Adı: EXPERT SYSTEMS WITH APPLICATIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.150-158
  • Erciyes Üniversitesi Adresli: Evet

Özet

In this study, we deal with the inventory management system of perishable products under the random demand and deterministic lead time in order to minimize the total cost of a retailer. We investigate two different ordering policies to emphasize the importance of the age information in the perishable inventory systems using Reinforcement Learning (RL). Stock-based policy replenishes stocks according to the stock quantities, and Age-based policy considers both inventory level and the age of the items in stock. The problem considered in this article has been modeled using Reinforcement Learning and the policies are optimized using Q-learning and Sarsa algorithms. The performance of the proposed policies compared with similar policies from the literature. The experiments demonstrate that the ordering policy which takes into account the age information appears to be an acceptable policy and learning with RL provides better results when demand has high variance and products has short lifetimes. (C) 2017 Elsevier Ltd. All rights reserved.