Chaos Solitons & Fractals, cilt.145, sa.2021, ss.1-9, 2021 (SCI-Expanded)
In this paper, we established a mathematical model of an SI 1 I 2 R epidemic disease with saturated inci- dence and general recovery functions of the first disease I 1 . Considering the basic reproduction number, we obtained conditions for both disease-free and co-existing cases. The equilibrium points local stabil- ity is verified by using the Routh-Hurwitz criterion, while for the global stability, we used a suitable Lyapunov function to analyze the endemic spread of the positive equilibrium point. Moreover, we car- ried out the local bifurcation around both equilibrium points (disease-free and co-existing), where we obtained that the disease-free equilibrium point undergoes a transcritical bifurcation. We conduct nu- merical simulations that supported our theoretical findings.