Dynamic Interplay Between miR-124-3p and EGF in the Regulation of Overgrowth via RNA Signaling


KORKMAZ BAYRAM K., Bayram A., Yilmaz Sukranli Z., MEHMETBEYOĞLU DUMAN S. E., Aybuga F., Tufan Benli E., ...Daha Fazla

Biomolecules, cilt.15, sa.8, 2025 (SCI-Expanded, Scopus) identifier identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 8
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/biom15081186
  • Dergi Adı: Biomolecules
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: pronuclear microinjection, overgrowth, neurospheres, growth factor
  • Erciyes Üniversitesi Adresli: Evet

Özet

Background: Epigenetic mechanisms and RNA signalling profoundly impact body growth during the early stages of embryonic development. RNA molecules, like microRNAs, play a vital role in early embryonic development, laying the groundwork for future growth and function. miR-124-3p microinjected into mouse fertilised eggs (miR-124-3p*) exhibited a significantly overgrowth phenotype. Behavioural test results showed that miR-124-3p mice were more physically active, as indicated by total distance and movement velocity. However, the molecular mechanism leading to these phenotypic changes mediated by miR-124-3p remains a mystery. This study aimed to investigate the role of epidermal growth factor (EGF) in developing an overgrowth phenotype in miR-124-3p* mice. Results: In this research, we preferred to work with neurospheres (NSs) due to the challenges of handling a single embryo, as NSs exhibit similar features, especially regarding cell growth, differentiation, and capacity for self-renewal. We examined the mRNA expression levels of Sox8, Sox9, Sox10, Doublecortin (Dcx), and Neurod1 genes, which are linked to a tiny phenotype in knockout mice, in total embryos at E7.5 and hippocampal cells isolated from E19.5-day fetus and neurospheres aged 12 and 21 days, which were derived from these hippocampal cells through primary cell culture. These genes are significantly overexpressed in miR-124-3p* NSs, but not in the E7.5 total embryos or the hippocampus of the E19.5 fetus. Conclusions: These findings suggest a possible link between miR-124-3p microinjection and EGF activation, which may be associated with early neurogenesis and neuronal differentiation in embryos. This molecular shift might contribute to the development of mice exhibiting increased physical activity and enlarged body size, although these observations remain correlative and require further validation.