Some new results of nonlinear model arising in incompressible visco-elastic Kelvin-Voigt fluid


Alam M. N., Islam S., İLHAN O. A., Bulut H.

MATHEMATICAL METHODS IN THE APPLIED SCIENCES, cilt.45, sa.16, ss.10347-10362, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 16
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1002/mma.8372
  • Dergi Adı: MATHEMATICAL METHODS IN THE APPLIED SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, INSPEC, MathSciNet, Metadex, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.10347-10362
  • Anahtar Kelimeler: incompressible visco-elastic Kelvin-Voigt fluid, modified (G'/G)-expansion method, Oskolkov equation, wave solutions, SOLITON-SOLUTIONS, WAVE STRUCTURES, OPTICAL SOLITONS, LUMP SOLUTIONS, EQUATION
  • Erciyes Üniversitesi Adresli: Evet

Özet

The Oskolkov equation, which is a nonlinearmodel that describes the dynamics of an incompressible visco-elastic Kelvin-Voigt fluid, is examined in the present study. It has been obtained by applying the modified (G'/G)-expansion method, especially using calculation results such as kinkwave, cuspwave, periodic respiratory waves, and periodic wave solutions. This research has employed this process to seek novel computational results of the Oskolkov equation. The dynamics of obtained wave solutions are analyzed and illustrated in figures by selecting appropriate parameters. With three dimensional, two dimensional, and contour graphical illustration, mathematical results explicitly exhibit the proposed algorithm's complete honesty and high performance in physics, mathematics, and engineering.