PHYSICAL REVIEW B, vol.90, no.6, 2014 (SCI-Expanded)
We describe a regime for low-field magnetoresistance in organic semiconductors, in which the spin-relaxing effects of localized nuclear spins and electronic spins interfere. The regime is studied by the controlled addition of localized electronic spins to a material that exhibits substantial room-temperature magnetoresistance (similar to 20%). Although initially the magnetoresistance is suppressed by the doping, at intermediate doping there is a regime where the magnetoresistance is insensitive to the doping level. For much greater doping concentrations the magnetoresistance is fully suppressed. The behavior is described within a theoretical model describing the effect of carrier spin dynamics on the current.