Cold Tolerance Assay Reveals Evidence of Climate Adaptation Among American Elm (Ulmus americana L.) Genotypes


Butnor J. R., Wilson C. P., BAKIR M., D’Amato A. W., Flower C. E., Hansen C. F., ...Daha Fazla

Forests, cilt.15, sa.11, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 11
  • Basım Tarihi: 2024
  • Doi Numarası: 10.3390/f15111843
  • Dergi Adı: Forests
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, CAB Abstracts, Compendex, Environment Index, Geobase, Veterinary Science Database, Directory of Open Access Journals
  • Anahtar Kelimeler: relative electrolyte leakage, cold hardiness, cold tolerance, American elm, Dutch elm disease, winter injury, freezing injury, acclimation, de-acclimation, mid-winter
  • Erciyes Üniversitesi Adresli: Evet

Özet

The American elm (Ulmus americana L.), once a dominant species in North American floodplain forests, has suffered significant population declines due to Dutch elm disease (DED). Despite this, some elms persist, potentially exhibiting disease resistance and climate-adaptive traits that could facilitate restoration. Understanding these traits is crucial for selecting genotypes suited to current and future climatic conditions, particularly in colder regions. This study evaluated the mid-winter cold tolerance of American elm genotypes across a climatic gradient to ascertain evidence of local climate adaptation. We used relative electrolyte leakage (REL) to assess mid-winter cold tolerance of current-year shoots on eleven survivor genotypes from New England and one susceptible, control genotype from Ohio. The lethal temperature, at which 50% of cellular leakage occurs (LT50), was determined and compared with 30-year climate data to identify potential climate adaptation. Genotypes from colder regions exhibited greater cold hardiness, indicating local adaptation to climate. Observed mid-winter LT50 values (−42.8 °C to −37.7 °C) were in excess of the 30-year minimum air temperature, even at the coldest source location. This calls into question whether mid-winter cold tolerance is the critical period for injury to American elm and more attention should be given to environmental conditions that cause de-acclimation to cold. By understanding the adaptive capacity of American elm, managers can better select mother trees for regional seed orchards, ensuring the long-term success of restoration initiatives.