A yearlong monitoring campaign of polycyclic aromatic compounds and other air pollutants at three sites in Sweden: Source identification, in vitro toxicity and human health risk assessment.


Sadiktsis I., de Oliveira Galvão M. F., Mustafa M., Toublanc M., Ünlü Endirlik B., Silvergren S., ...Daha Fazla

Chemosphere, cilt.332, ss.138862, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 332
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.chemosphere.2023.138862
  • Dergi Adı: Chemosphere
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), Artic & Antarctic Regions, BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, MEDLINE, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.138862
  • Anahtar Kelimeler: PM10, Black carbon, Nitrogen oxides, Polycyclic aromatic hydrocarbons, Source apportionment, Positive matrix factorization
  • Erciyes Üniversitesi Adresli: Evet

Özet

ABS T R A C T Air pollution is a complex mixture of gases and particulate matter (PM) with local and non-local emission sources, resulting in spatiotemporal variability in concentrations and composition, and thus associated health risks. To study this in the greater Stockholm area, a yearlong monitoring campaign with in situ measurements of PM10, PM1, black carbon, NOx, O3, and PM10-sampling was performed. The locations included an Urban and a Rural background site and a Highway site. Chemical analysis of PM10 was performed to quantify monthly levels of polycyclic aromatic compounds (PACs), which together with other air pollution data were used for source apportionment and health risk assessment. Organic extracts from PM10 were tested for oxidative potential in human bronchial epithelial cells. Strong seasonal patterns were found for most air pollutants including PACs, with higher levels during the winter months than summer e.g., highest levels of PM10 were detected in March at the Highway site (33.2 mu g/m3) and lowest in May at the Rural site (3.6 mu g/m3). In general, air pollutant levels at the sites were in the order Highway > Urban > Rural. Multivariate analysis identified several polar PACs, including 6H-Benzo[cd]pyren-6-one, as possible discriminatory markers for these sites. The main sources of particulate pollution for all sites were vehicle exhaust and biomass burning emissions, although diesel exhaust was an important source at the Highway site. In vitro results agreed with air pollutant levels, with higher oxidative potential from the winter samples. Estimated lung cancer cases were in the order PM10 > NO2 > PACs for all sites, and with less evident seasonal differences than in vitro results. In conclusion, our study presents novel seasonal data for many PACs together with air pollutants more traditionally included in air quality monitoring. Moreover, seasonal differences in air pollutant levels correlated with differences in toxicity in vitro.