Testicular Expression of Antioxidant Enzymes and Changes in Response to a Slow-Release Deslorelin Implant (Suprelorin (R) 4.7 mg) in the Dog


Creative Commons License

YAMAN GRAM D., Sexton B., LİMAN N., Muller L., ABAY M., GRAM A., ...More

ANIMALS, vol.12, no.18, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 18
  • Publication Date: 2022
  • Doi Number: 10.3390/ani12182343
  • Journal Name: ANIMALS
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, CAB Abstracts, EMBASE, Food Science & Technology Abstracts, Veterinary Science Database, Directory of Open Access Journals
  • Keywords: canine, testis, infertility, antioxidants, deslorelin, GnRH superagonist, testicular downregulation, sperm, puberty, HYDROPEROXIDE GLUTATHIONE-PEROXIDASE, MESSENGER-RNA EXPRESSION, GNRH-AGONIST DESLORELIN, SUPEROXIDE-DISMUTASE, DOWN-REGULATION, LUTEINIZING-HORMONE, OXIDATIVE STRESS, SEMEN QUALITY, STEROIDOGENESIS, CATALASE
  • Erciyes University Affiliated: Yes

Abstract

Spermatogenesis takes place in a hypoxic environment, and antioxidant enzymes protect germ and somatic cells from free radical-mediated damage. Expression of the antioxidant enzyme system in the canine testis has not yet been investigated. We hypothesized that the slow-release GnRH superagonist deslorelin 4.7 mg implant, which induces temporary reversible suppression of endocrine and germinative testicular function, would affect the testicular expression of antioxidant enzymes compared to untreated adult and prepubertal dogs. The goal of this study was to investigate and compare gene (by qPCR, in whole-tissue homogenates) and protein expression (by immunohistochemistry) of superoxide dismutase (SOD1, SOD2), catalase (CAT), glutathione peroxidase (GPx1), and glutathione disulfide reductase (GSR) in the testes of untreated adult (CON, n = 7), prepubertal (PRE, n = 8), and deslorelin-treated (DES, n = 5, 16 weeks after implantation) dogs. We found that in DES dogs, the gene expression of SOD1 was significantly (p < 0.05) lower and GPx1 was higher than in CON, and SOD2 was higher than in PRE. Expression of all, except for the SOD2 mRNA, differed between the CON and PRE dogs. Immunohistochemistry showed distinct cell-specific localization and expression patterns for the antioxidant enzymes in each experimental group. Additionally, in the CON animals, cell-specific SOD1, CAT, and GSR expression was dependent on the stage of the seminiferous epithelium cycle. These findings confirm that members of the antioxidant enzyme system are present in normal adult and prepubertal testis as well as in the deslorelin-treated downregulated adult canine testis, and that this local antioxidant system protects developing germ cells and somatic cells from oxidative damage. Different expression patterns of antioxidant enzymes in various germ cell populations and stages of the seminiferous epithelium cycle may indicate differences in their susceptibility to oxidative stress depending on their developmental and maturation stage. The continued presence of the antioxidant enzymes in the testis of DES dogs offers protection to spermatogonia as well as Sertoli and Leydig cells from oxidative stress during temporary infertility, potentially contributing to ensure the reversibility of suppression and the return of normal spermatogenesis and steroidogenesis after the end of deslorelin treatment.