Separation and enrichment of Cd and Pb from food and water samples based on a graphene oxide-decorated poly 2-diethylaminoethyl methacrylate nanocomposite by dispersive micro-solid phase extraction (d-μ-SPE)


Ahmed H. E. H., Aliyev E., Alosmanov R., SOYLAK M.

Food Chemistry, cilt.465, 2025 (SCI-Expanded, Scopus) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 465
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.foodchem.2024.142008
  • Dergi Adı: Food Chemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Food Science & Technology Abstracts, Metadex, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Dispersive micro-solid phase extraction (d-, mu-SPE), Cadmium, Lead, Water and food sample analysis, GO@PDEAEMA
  • Erciyes Üniversitesi Adresli: Evet

Özet

In this study, a graphene oxide combined with poly(2-diethylaminoethyl methacrylate) (GO@PDEAEMA) nanocomposite was synthesized for the separation and enrichment of Cd and Pb from food and water samples using the dispersive micro-solid phase extraction (d-μ-SPE) technique. The GO@PDEAEMA nanocomposite was synthesized using surface-initiated atom transfer radical polymerization (SI-ATRP) and characterized using various analytical techniques, such as FTIR, FE-SEM, TGA, BET, and XRD. The optimal experimental conditions were pH 8, 0.5 M HNO₃ as eluent, 5 mg of sorbent, and adsorption/desorption times of 0.5 and 1 min, respectively, with a recovery range of 89–101 %. The suggested method showed low limits of detection (LOD) and quantification (LOQ) of 0.11 μg L−1 and 0.37 μg L−1 for Cd and 0.28 μg L−1 and 0.93 μg L−1 for Pb, respectively. The optimal procedure was successfully applied to real water and food samples. The study demonstrates the possibility of using GO@PDEAEMA nanocomposite as an effective sorbent for toxic metal extraction.