Dynamic phase diagrams of a ferrimagnetic mixed spin (1/2,1) Ising system within the path probability method


ERTAŞ M. , KESKİN M.

PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, vol.437, pp.430-436, 2015 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 437
  • Publication Date: 2015
  • Doi Number: 10.1016/j.physa.2015.05.110
  • Title of Journal : PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS
  • Page Numbers: pp.430-436
  • Keywords: Path probability method, Mixed spin (1/2,1), Dynamic phase transition, Dynamic phase diagram, BLUME-CAPEL MODEL, DEPENDENT MAGNETIC-FIELD, DECORATED BETHE LATTICE, 4-SPIN INTERACTIONS, HONEYCOMB LATTICE, CRYSTAL-FIELD, BILAYER SYSTEM, THERMODYNAMICAL PROPERTIES, COMPETING DYNAMICS, HEISENBERG MODEL

Abstract

In this study we used the path probability method (PPM) to calculate the dynamic phase diagrams of a ferrimagnetic mixed spin-(1/2, 1) Ising system under an oscillating magnetic field. One of the main advantages of the PPM over the mean-field approximation and the effective-field theory based on Glauber-type stochastic dynamics is that it contains two rate constants which are very important for studying dynamic behaviors. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and the twelve main different topological types of the phase diagrams are obtained. The phase diagrams contain paramagnetic (p), ferrimagnetic (i) and i + p mixed phases. They also exhibit a dynamic tricritical and reentrant behavior as well as the dynamic double critical end point (B), critical end point (E), quadruple point (QP) and triple point (TP). The dynamic phase diagrams are compared and discussed with the phase diagrams obtained in previous works within the mean-field approximation and the effective-field theory based on Glauber-type stochastic dynamics. (C) 2015 Elsevier B.V. All rights reserved.