IEEE TRANSACTIONS ON FUZZY SYSTEMS, cilt.28, sa.6, ss.1084-1095, 2020 (SCI-Expanded)
Salt and pepper (SAP) noise elimination is a crucial step for further image processing and pattern recognition applications. The main aim of this article is to propose a novel SAP noise elimination method which employs a regression-based neuro-fuzzy network for highly corrupted gray scale and color images. In the proposed method, multiple neuro-fuzzy filters trained with artificial bee colony algorithm is combined with a decision tree algorithm. The performance of the proposed filter is compared with a number of well known methods with respect to popular metrics including, structural similarity index, peak signal-to-noise ratio, and correlation on well known test images. The results reveal that the proposed filter has superior performance in terms of all comparison metrics.