TURKISH JOURNAL OF PHYSICS, cilt.46, sa.6, ss.252-275, 2022 (ESCI)
Abstract: We investigated the dynamic phase transitions (DPTs) in the mixed spin (2, 5/2) Blume-Emery-
Griffiths model with repulsive biquadratic interaction in the presence of a time-varying magnetic field. We
used the path probability method to obtain the set of the dynamic equations. We numerically solved these
dynamic equations to characterize the nature of first- and second-order phase transitions and to find the DPT
temperatures as well as obtain the phases in the system. We constructed the dynamic phase diagrams (DPDs)
in reduced temperature and amplitude of oscillating magnetic field plane. We observed that the DPDs display
richer, complex and more topological various type of phase diagrams. In particular, DPDs exhibit the disordered
phase, antiquadrupolar or staggered phase, six different ferrimagnetic phases, three different nonmagnetic
phases, and numerous mixed phases. DPDs also display two dynamic tricritical points for only smaller values
of crystal-field interactions, multiple critical end and double critical end points, one zero-temperature critical
point, one inverse critical end point, and a quadruple point depending on interaction parameters. The system
always shows the reentrant behaviors for the higher values of magnetic field amplitude, but it does not exhibit
the dynamic tricritical behavior for higher values of crystal-field parameter.