A Comprehensive Review of Convolutional Neural Networks based Disease Detection Strategies in Potato Agriculture


Gülmez B.

Potato Research, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11540-024-09786-1
  • Dergi Adı: Potato Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, CAB Abstracts, Food Science & Technology Abstracts, Veterinary Science Database
  • Anahtar Kelimeler: Artificial intelligence, Computer vision, Convolutional Neural Networks, Potato disease detection
  • Erciyes Üniversitesi Adresli: Hayır

Özet

This review paper investigates the utilization of Convolutional Neural Networks (CNNs) for disease detection in potato agriculture, highlighting their pivotal role in efficiently analyzing large-scale agricultural datasets. The datasets used, preprocessing methodologies applied, specific data collection zones, and the efficacy of prominent algorithms like ResNet, VGG, and MobileNet variants for disease classification are scrutinized. Additionally, various hyperparameter optimization techniques such as grid search, random search, genetic algorithms, and Bayesian optimization are examined, and their impact on model performance is assessed. Challenges including dataset scarcity, variability in disease symptoms, and the generalization of models across diverse environmental conditions are addressed in the discussion section. Opportunities for advancing CNN-based disease detection, including the integration of multi-spectral imaging and remote sensing data, and the implementation of federated learning for collaborative model training, are explored. Future directions propose research into robust transfer learning techniques and the deployment of CNNs in real-time monitoring systems for proactive disease management in potato agriculture. Current knowledge is consolidated, research gaps are identified, and avenues for future research in CNN-based disease detection strategies to sustain potato farming effectively are proposed by this review. This study paves the way for future advancements in AI-driven disease detection, potentially revolutionizing agricultural practices and enhancing food security. Also, it aims to guide future research and development efforts in CNN-based disease detection for potato agriculture, potentially leading to improved crop management practices, increased yields, and enhanced food security.