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Preface

ix

My exposure to the Taguchi methods began in the early 1980s 
when I was employed with General Motors Corporation at its 
Technical Center in Warren, Mich. At that time, manufacturing 
industries as a whole in the Western world, in particular the auto-
motive industry, were starving for practical techniques to improve 
quality and reliability. Having perfected his concepts in Japan and 
a few places elsewhere during the late 1940s, Dr. Taguchi intro-
duced his quality improvement methods to the United States in 
the early 80s. His focus was to optimize performance and make 
design robust by use of the statistical technique known as design 
of experiments (DOE), which was originally introduced by R.A. 
Fisher in England in the 1920s.

To make the technique more effective and easy to use, Dr. Ta-
guchi recommended a standardized version of DOE and devised 
ways for practical application and analysis of results. For quality 
improvement champions, this was an attractive tool. Manufac-
turing organizations of all kinds readily learned and applied the 
methods to benefit the design of numerous products and processes. 
Remarkable progress was made by many throughout the 1980s. 
For automotive manufacturers, the process of catching up in qual-
ity with foreign manufacturers was launched.

Those of us who were actively promoting the quality improve-
ment effort within our organizations and had the responsibilities 
to implement the technique were challenged to find better ways 
to teach and apply the technique. In the early 80s, there were 
only a handful of books and hardly any documented application 
examples. The primary reference in the market was Dr. Taguchi’s 
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own book, System of Experimental Design (Quality Resources, 
1987). That book and related training materials were my first 
resources to explain the Taguchi technique to others in a simpler 
form. A credit to the effectiveness and acceptance of the Taguchi 
technique is that there now are more than a dozen textbooks and 
thousands of published reports available to practitioners.

Following the overwhelming surge of interest in learning and 
implementing the technique by manufacturing companies of all 
kinds, the focus shifted in the mid 1990s. Introduction of general 
and company-wide quality improvement disciplines such as ISO/
QS-9000 and Six Sigma unintentionally diminished the priority 
and funding for activities that required special techniques. These 
general quality systems, which were value-added and beneficial 
to most businesses, also required use of statistical techniques like 
DOE, Taguchi methods, statistical process control (SPC), and so 
on, but for most companies these were among the last few things 
to do and easily postponed.

The turn of the 21st century saw the beginning of a downturn 
in the economy. Auto companies were downsizing; most didn’t 
have much money to spend on training as business survival over-
shadowed quality improvement concerns. Now as the economy is 
starting to show signs of recovery, manufacturing companies can 
refocus on implementing statistical techniques.

While teaching, training, and practicing in the 1990s, I found 
greater demand for a reference on the application of the technique 
rather than on the theory. Thus, the first edition of A Primer on 
the Taguchi Method (Society of Manufacturing Engineers, 1990) 
introduced basic concepts through application examples and case 
studies. This led to my second book, Design of Experiments Using 
the Taguchi Approach (John Wiley & Sons, 2001), which covered 
a minimal amount of theory while describing many more applica-
tions in detail. Both books were received favorably by readers in 
academia, business, and industry.

HIGHLIGHTS OF THE SECOND EDITION

The following are highlights of additions and changes in this 
second edition of the Primer:



• Chapters 1–4: Minor changes in clarity and in the defini-
tions of quality 

• Chapter 5: Taguchi robust design strategy and the two-step
optimization technique added

• Chapter 6: Advanced analysis of multiple-sample results 
described

• Chapter 7: Relationship of the loss function to other per-
formance and capability statistics defined

• Chapter 8: Comprehensive experiment planning discussions 
included, and transformation to overall evaluation criteria 
revised and expanded

• Chapter 9: An example depicting current practices in ap-
plication to production problem solving added
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1 Quality Through Product
 and Process Optimization

1

BACKGROUND

Mankind has always had a fascination with quality. Today’s 
technology is testimony to man’s incessant desire to provide a 
higher level of quality in products and services to increase market 
share and profits. Sometimes quality is essential. A pacemaker that 
controls heart action must operate continuously and precisely. An 
erratic pacemaker is valueless, useless, and dangerous.

Driven by the need to compete on price and performance and 
to maintain profitability, quality-conscious manufacturers are 
increasingly aware of the need to optimize products and processes. 
Quality achieved by means of design optimization is found by many 
manufacturers to be cost effective in gaining and maintaining a 
competitive position in the world market.

DESIGN OF EXPERIMENTS—THE CONVENTIONAL APPROACH

The technique of defining and investigating all possible condi-
tions in an experiment involving multiple factors is known as the 
design of experiments (DOE). In the literature, this technique is 
also referred to as factorial design. Design of experiments concepts 
have been in use since Sir Ronald A. Fisher’s work in agricultural 
experimentation during the late 1920s. Fisher [1] successfully 
designed experiments to determine optimum treatments of land 
for agriculture to achieve maximum yield. Numerous applications 
of this approach, especially in the chemical and pharmaceutical 
industries, are cited in the literature. A thorough coverage of this 
subject is beyond the scope of this study, but the method and its 
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advantages and disadvantages from an engineering point of view 
are illustrated by a simple example.

Consider a snack food company planning to introduce a new 
chocolate chip cookie in the market. The product designers have 
standardized all other ingredients except the amount of sugar and 
chocolate chips. Two levels of chips, C1 and C2, and two levels of 
sugar, S1 and S2, were selected (subscripts 1 and 2, respectively, 
refer to the low and high levels of each factor). To select the best 
combination of these ingredients that appeal most to potential 
customers, the market research group decided to conduct a survey 
of customer preference.

This is one of the simplest cases of design of experiments. It 
involves two factors (chips and sugar) at two different levels (high 
and low) that affect the taste of cookies. Such an experiment is 
described as a 2 × 2 factorial experiment. There are four (22) pos-
sible treatments or combinations. The responses to these factors, 
as obtained by a taste test, are given in Table 1-1.

Examination of customer response shows a 10% (55 – 45) 
increase in preference for sugar level S2 at the low level (C1) of 
chocolate chips, but the response increases to 15% (80 – 65) when 
more chips (C2) are used. These increases are called the simple 
effect of sugar. On the other hand, for the higher amount of chips, 
the taste preference increased from 45% to 65% at sugar level 
S1 and further increased to 80% with the higher sugar level S2.

Table 1-1. Taste preference survey (in percent)

CHOCOLATE CHIPS
LEVEL

SUGAR LEVEL

Mean

Mean response
(chocolate chips)

(C2 – C1)
S1 S2

C1 45 55 50.0
22.5

C2 65 80 72.5

Mean 55.0 67.5
Grand mean

61.25

Mean response
(sugar)
(S2 – S1)

12.5
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The mean response, that is, 
the difference between the 
average effects at two levels 
of sugar (12.5%), is called 
the main effect of sugar. 
Similarly, the main effect for 
chocolate chips is 22.5%. It 
is important to note that, in 
this example, only the main 
effects are analyzed; no at-
tempt is made to analyze the 
interactions between the fac-
tors. Interactions may or may 
not be present. The relative 
influence of the factors and 
interactions between various 
factors included in the study 
can be quantitatively determined by using the analysis of variance 
(ANOVA). This procedure is described in Chapter 6.

For the present, the degree of interactions for a 2 × 2 experi-
ment can be determined from Figure 1-1, which graphs the response 
against one factor (C) for two levels of the second factor (S). Because 
the lines for the two levels, S1 and S2, are almost parallel, the factors 
(S and C) are said to be independent, and little or no interaction is 
assumed to exist. Nonparallel lines would indicate the presence of 
some interaction. Highly skewed lines or a higher angle between 
lines (need not be intersecting) would indicate strong interaction 
between the two factors. Figure 1-1 indicates only a slight interac-
tion between the two factors (sugar and chocolate chips).

In the above example there were only two factors, each at two 
different levels. It would be rather easy to manufacture four types 
of cookies reflecting all possible combinations of the factors under 
study and to subject them to a market survey.

For a full factorial design, the number of possible designs, N, is

N = L
m

(1.1)

where L = number of levels for each factor and m = number of factors.

Figure 1-1. Factor effects

Re
sp

on
se

Sugar level

Chocolate chips level

S2

S1

C1 C2

56
52
48
44
40

84
80
76

72
68
64
60

45

55

80

65



4 A Primer on the Taguchi Method

Thus, if the qualities of a given product depend on three fac-
tors, A, B, and C, and each factor is to be tested at two levels, then 
Eq. (1-1) would result in 23 (8) possible design configurations. This 
three-factor, two-level experiment is represented by Table 1-2.

In this configuration of factors and levels, the test matrix is 
still easily managed, and every combination can be investigated. 
Each box in the table is called a “cell.” To improve accuracy, sev-
eral observations are made per cell, and the significance of the 
factors’ influences on the variability of results is determined by 
statistical analysis (ANOVA).

Now consider the case where the cookies under consideration 
have 15 different ingredients at two levels each. In this case, 215

(32,768) possible varieties of cookies need to be investigated before 
the most desirable recipe can be established. A market research 
program of this magnitude would be exorbitant in cost and time. 
Techniques such as fractional (or partial) factorial experiments are 
used to simplify the experiment. Fractional factorial experiments 
investigate only a fraction of all possible combinations. This ap-
proach saves considerable time and money but requires rigorous 
mathematical treatment, both in the design of the experiment 
and in the analysis of the results. Each experimenter may design 
a different set of fractional factorial experiments.

So, while factorial and fractional factorial designs of experi-
ments are widely and effectively used, they suffer from the fol-
lowing limitations:

1. The experiments become unwieldy in cost and time when 
the number of variables is large.

2. Two designs for the same experiment may yield different 
results.

3. The interpretation of the experimental results with a 
larger number of factors may be difficult due to lack of 
clear design and analysis guidelines.

In this part of the science of designing experiments, Dr. Genichi 
Taguchi of Japan proposed an innovative method. He simplified 
and standardized fractional factorial designs in such a manner that 
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two engineers conducting tests thousands of miles apart would use 
designs of similar size and expect to obtain consistent results.

Taguchi contributed discipline and structure to the design of 
experiments. The result is a standardized design methodology that 
can easily be applied by investigators. Furthermore, designs for the 
same experiment by two different investigators will yield similar 
data and will lead to similar conclusions. Taguchi overcame the 
limitations of factorial and fractional factorial experiments.

DESIGN OF EXPERIMENTS—THE TAGUCHI APPROACH

To make the DOE easier and more attractive to industrial 
practitioners, Dr. Taguchi proposed the following considerations 
for application of the technique:

1. Definition of quality – Taguchi defined quality in terms of 
minimum loss to society (described in detail in Chapter 2), 
which in measurable engineering terms translates into con-
sistency of performance. Regardless of application, whether 
it is a product or a process, or how the results are measured, 
consistency in performance is considered as a primary 
attribute. Consistency is achieved when performance is 
close to the target with least variation. To improve quality, 
Taguchi proposed a two-step optimization approach:

a. Find the factor-level combination that reduces perfor-
mance variability.

b. Adjust the factor levels that bring performance closer 
to the target.

2. Standardized DOE – For designing experiments, Taguchi 
utilized a special set of tables, called orthogonal arrays 

Table 1-2. Test matrix with three factors at two levels
A1 A2

B1 B2 B1 B2 Average

C1

C2 “cell”

Average
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(OAs), which represent the smallest fractional factorials 
and are used for most common experiment designs.

3. Robust design strategy – To make products and processes 
insensitive to the influence of uncontrollable (noise) factors, 
Taguchi incorporates a formal way to include noise factors 
in the experiment layout. This new structure (called outer 
array design) facilitates the use of experiments of smaller 
size to study the effects of a larger number of noise factors, 
which leads to a favorable performance with the mean close 
to the target and reduced variation around the mean.

4. Loss function – The mathematical formula associated with 
the concept of the loss function proposed by Taguchi allows a 
simple way to quantify the improvements in monetary units. 
The concepts can be easily used to express predicted improve-
ment from DOE results in terms of expected cost savings. 

5. Signal-to-noise (S/N) analysis – For analysis of results from 
multiple-sample tests, use of signal-to-noise ratios instead 
of the results makes the analysis of DOE results much 
easier. In addition, the logarithmic transformation of the 
results in terms of S/N ratios empowers the prediction of 
improvement in performance from the analysis.

EXERCISES

1-1. What are the three main disadvantages of the conventional
design of experiments approach as compared with Taguchi’s
method?

1-2. Which one of the two factor effect graphs in Figure 1-2 indi-
cates the existence of an interaction between the two factors
of an experiment?

1-3. A product involves three primary parameters at three differ-
ent levels of each. To optimize the product, a full factorial
design is planned for experimental evaluations. How many
possible design configurations need to be tested to achieve
the objective?

1-4. Draw a factor graph for the experiment shown in Table 1-3
and discuss the results.
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Figure 1-2. Factor effect graphs
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B

A

Average
Response to B

(B2 – B1)A1 A2

B1 40 70 B1 =
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Response to A
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BACKGROUND

After the Second World War, Allied forces found the quality of 
the Japanese telephone system to be extremely poor and totally 
unsuitable for long-term communication purposes. To improve 
the system to a state-of-the-art level, the Allied command rec-
ommended that Japan establish research facilities similar to the 
Bell Laboratories in the United States. The Japanese founded the 
Electrical Communication Laboratories (ECL), with Dr. Genichi 
Taguchi in charge of improving R&D productivity and enhancing 
product quality. Taguchi observed that a great deal of time and 
money was expended in engineering experimentation and testing, 
with little emphasis on the process of creative brainstorming to 
minimize the expenditure of resources.

Taguchi started to develop new methods to optimize the 
process of engineering experimentation. He developed the 
techniques that are now known as the Taguchi Methods. His 
greatest contribution lies not in the mathematical formulation 
of the design of experiments (DOE) but rather in the accompa-
nying philosophy. His approach is more than a method to lay 
out experiments. It is a concept that has produced a unique 
and powerful quality improvement discipline that differs from 
traditional practices.

Two completely opposing points of view are commonly held 
about Taguchi’s contribution to the statistical design of experi-
ments. One view holds that his contribution to the field of quality 
control is one of the most significant developments of the last 
few decades. The other view maintains that many of the ideas 
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proposed in Taguchi’s approach are neither new nor were they 
developed by him. This text will not resolve this controversy but 
will explain application principles and document successful case 
studies using Taguchi’s methods. These new techniques were 
transplanted to the United States in the early 1980s and created 
significant changes in quality engineering methods in this country. 
The Taguchi approach has been successfully applied in several 
industrial organizations and has completely changed their outlook 
on quality improvement activities.

TAGUCHI PHILOSOPHY

Taguchi espoused an excellent philosophy for quality control 
in the manufacturing industries. Indeed, his doctrine is creating 
an entirely different breed of engineers who think, breathe, and 
live quality. He has, in fact, given birth to a new quality culture 
in this country. Ford Motor Company, for example, decreed in the 
early 1990s that all Ford Motor and suppliers’ engineers be trained 
in the Taguchi methodology and that these principles be used 
to resolve quality issues. Taguchi’s philosophy has far-reaching 
consequences, yet it is founded on three very simple and funda-
mental concepts. The whole of the technology and techniques arise 
entirely out of these three ideas. These concepts are:

1. Quality should be designed into the product and not 
inspected into it.

2. Quality is best achieved by minimizing the deviation from a 
target. The product should be so designed that it is immune 
to uncontrollable environmental factors.

3. The cost of quality should be measured as a function of 
deviation from the standard, and the losses should be 
measured system-wide.

Taguchi built on W.E. Deming’s observation that 85% of poor 
quality is attributable to the manufacturing process and only 15% 
to the worker. Hence, Taguchi developed manufacturing systems 
that were “robust” or insensitive to daily and seasonal variations 
of environment, machine wear, and other external factors. The 
three principles were his guides in developing these systems, 
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testing the factors affecting quality production, and specifying 
product parameters.

Taguchi believed that the better way to improve quality was to 
design and build it into the product. Quality improvement starts 
at the very beginning, that is, during the design stages of a prod-
uct or a process, and continues through the production phase. He 
proposed an “off-line” strategy for developing quality improvement 
early in the design phases in place of an attempt to inspect quality 
into a product on the production line. Taguchi observed that poor 
quality cannot be improved by the process of inspection, screen-
ing, or salvaging. No amount of inspection can put quality back 
into the product; inspection merely treats a symptom. Therefore, 
quality concepts should be based on, and developed around, the 
philosophy of prevention. The product design must be so robust 
that it is immune to the influence of uncontrolled application and 
environmental factors on the manufacturing processes. Taguchi 
was insistent on addressing quality up-front in design for much 
higher return on investment.

Taguchi’s second concept deals with actual methods of improv-
ing the quality of products. He contended that quality is directly 
related to the deviation of a design parameter from the target 
value, not to conformance to some fixed specifications. A product 
may be produced with properties skewed toward one end of an 
acceptance range yet show shorter life expectancy. However, by 
specifying a target value for the critical property and developing 
manufacturing processes to meet the target value with little de-
viation, the life expectancy may be much improved.

Taguchi’s third concept calls for measuring deviations from 
a given design parameter in terms of the overall life cycle costs 
of the product. These costs would include the cost of scrap, re-
work, inspection, returns, warranty service calls, and/or product 
replacement. These costs provide guidance regarding the major 
parameters to be controlled.

Taguchi views quality improvement as an ongoing effort. He 
continually strives to reduce variation around the target value. A 
product under investigation may exhibit a distribution that has a 
mean value different from the target value. The first step toward 
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improving quality is to achieve the population distribution as 
close to the target value as possible. To accomplish this, Taguchi 
designs experiments using specially constructed tables known as 
orthogonal arrays (OAs). The use of these tables makes the design 
of experiments very easy.

A second objective of manufacturing products to conform to 
an ideal value is to reduce the variation or scatter around the 
target. To accomplish this objective, Taguchi cleverly incorporates 
a unique way to treat noise factors. Noise factors, according to 
his terminology, are factors that influence the response of a pro-
cess but cannot be economically controlled. Noise factors such as 
weather conditions, machinery wear, and so on, are usually the 
prime sources for variations. Through the use of what he calls 
the outer arrays, Taguchi devised an effective way to study their 
influence with the least number of repetitions. The end result is 
a “robust” design affected minimally by noise, that is, with a high 
signal-to-noise (S/N) value.

To achieve desirable product quality by design, Taguchi recom-
mends a three-stage process, as follows:

1. System design
2. Parameter design
3. Tolerance design

The focus of the system design phase is on determining the 
suitable working levels of design factors. It includes designing 
and testing a system based on the engineer’s judgment of selected 
materials, parts, and nominal product/process parameters based 
on current technology. Most often it involves innovation and 
knowledge from the applicable fields of science and technology.

While system design helps to identify the working levels of the 
design factors, parameter design seeks to determine the factor levels 
that produce the best performance of the product/process under 
study. The optimum condition is selected so that the influence of 
the uncontrolled factors (noise factors) causes minimum variation of 
system performance. This text deals solely with parameter design.

Tolerance design is a step used to fine-tune the results of 
parameter design by tightening the tolerance of factors with sig-
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nificant influence on the product. Such steps will normally lead to 
identifying the need for better materials, buying newer equipment, 
spending more money for inspection, and so on.

Detailed discussion of system design and tolerance design is 
beyond the scope of this text.

CONCEPT OF THE LOSS FUNCTION

The concept of the “total loss function” employed by Dr. Ta-
guchi has forced engineers and cost accountants to take a serious 
look at the quality control practices of the past. The concept is 
simple but effective. Taguchi defines quality as “the total loss 
imparted to society from the time a product is shipped to the 
customer.” The loss is measured in monetary terms and includes 
all costs in excess of the cost of a perfect product. The definition 
can be expanded to include the development and manufacturing 
phases of a product.

A poorly conceived and designed product begins to impart 
losses to society from the embryonic stage and continues to do 
so until steps are taken to improve its functional performance. 
There are two major categories of loss to society with respect to 
the product quality. The first category relates to losses incurred as 
a result of harmful effects to society (for example, pollution), and 
the second category relates to losses arising because of excessive 
variation in functional performance. In this book, the total loss 
function refers essentially to the second category.

The conventional method of computing the cost of quality is 
based on the number of parts rejected and reworked in a produc-
tion environment. This method of quality evaluation is incapable 
of distinguishing between two samples, both within the specifica-
tion limits but with different distributions of targeted properties. 
Figure 2-1 shows the conventional method and Taguchi’s view of 
the loss function. This graph depicts the loss function as a function 
of deviation from an ideal or the target value of a given design 
parameter. Here T represents the target value or the most desir-
able value of the parameter under consideration. This parameter 
may be a critical dimension, color of the product, surface finish, 
or any other characteristic that contributes to the customer’s 
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conception of quality. How this ideal value of the parameter was 
arrived at and how significant this value is in achieving quality 
goals will be evident later.

UAL and LAL in Figure 2-1 represent upper and lower ac-
ceptable limits of a design parameter, respectively. Normally the 
product is functionally acceptable if the value of the specified 
parameter is within the range between the UAL and LAL limits. 
No societal loss is assumed to occur; the product is shipped to 
the consumer. However, outside these limits, as shown by the 
crosshatched region, 100% functional deterioration occurs, and 
the product is either discarded, reworked, or subjected to salvage 
operations. Every attempt is made to control the manufacturing 
process to maintain the product within the acceptable limits.

However, according to Taguchi, there is no sharp cutoff in the 
real world on situations just before and beyond the LAL and UAL 
points. Typically, performance begins to gradually deteriorate as 
the design parameter deviates from its optimum value. Therefore, 
Taguchi proposed that the loss function be measured by the devia-
tion from the ideal value. This function is continuous, as shown 
by the dotted line in Figure 2-1. Product performance begins to 
suffer when the design parameters deviate from the ideal or the 
target value. Taguchi’s definition clearly puts more emphasis on 
customer satisfaction, whereas previously all definitions were 

Figure 2-1. Taguchi and conventional loss functions

Old school
(No loss range)

100%

0%

Taguchi
loss function

Conventional
loss function

Target value ( )TUAL LAL

LAL = Lower acceptable limit (same as LSL)
UAL = Upper acceptable limit (same as USL)



Taguchi Approach to Quality and Cost Improvement 15

concerned with the producer. Optimum customer satisfaction can 
be achieved by developing the products that meet the target value 
on a consistent basis. It may be worthwhile to mention that Tagu-
chi allows for more than 100% loss imparted by a product. Such 
cases can occur when a subsystem results in a failure of the entire 
system or when a system fails catastrophically. Thus, the single 
most important aspect of Taguchi’s quality control philosophy is 
the minimization of variation around the target value.

A case study conducted by the Sony Corporation makes it abun-
dantly clear that these two schools of thought are significantly dif-
ferent from each other and indeed affect customer satisfaction. In 
the early 1980s, Sony manufactured one of its color television sets 
in Japan as well as in the United States. The TVs from both sources 
were intended for the U.S. market and had identical design and 
system tolerances. Yet American consumers consistently preferred 
the color characteristics of TV sets manufactured overseas.

A study was conducted to determine a cause for the difference 
in customer preference. The results indicated that the frequency 
distributions for the sets manufactured in United States and those 
manufactured in Japan were significantly different, as shown 
in Figure 2-2. Plants in both countries produced TVs with color 
density within the tolerance range. None or a limited number of 
televisions with out-of-tolerance color characteristics were shipped 
to the consumer. However, the U.S.-built sets followed a somewhat 
flat distribution consistent with a go/no-go philosophy, while the 
product manufactured in Japan followed a normal distribution 
with smaller deviation from the target value. The large scatter, 
observed in the performance characteristics of the product manu-
factured in the U.S., as is evident from Figure 2-2, was responsible 
for significantly lower customer preference for these sets. Once the 
process in the U.S. plant was improved, which led to the produc-
tion of the frequency distribution similar to the TVs produced in 
Japan, customer satisfaction with the U.S. product achieved the 
level of satisfaction seen with the imported sets. The Sony case 
demonstrated that quality is more than just producing between 
upper and lower limits; quality is achieving the target as much 
as possible and limiting deviations from the target.
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Consider another example, which will further support this 
concept of quality. Two batches of main bearings for an internal 
combustion engine were received from two different sources, A 
and B, for a new engine development program. Under laboratory 
conditions, bearings from source B wore much faster than those 
from source A. To pinpoint the cause of the unequal wear, selected 
performance characteristics of the bearings were measured and 
posted. Both batches of bearings were within the design specifi-
cations. However, the source B bearings consistently measured 
a mean diameter on the larger side of the tolerance limits, as 
depicted in Figure 2-3. Although within the tolerance band, the 
larger diameter resulted in excessive clearance. Bearing analysis 
later revealed that excessive clearance adversely affected the oil 
film thickness, causing the poor wear properties of this batch. 

Figure 2-2. Color density distributions
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The problem was solved by adjusting the manufacturing process 
to maintain bearing diameter near the target value.

The loss function and its implications are discussed in detail 
in later sections. At present, it is important to note that:

• The quality loss function is a continuous function and is 
a measure of deviation from the target value. The con-
formance to specification limits LAL and UAL is an inad-
equate measure to define the quality loss function.

• Quality loss is related to product performance character-
istics and can best be minimized by designing quality into 
the product. Prevention of poor quality is less costly than 
rework and yields far better returns.

• Quality loss results from customer dissatisfaction and 
should be measured system-wide rather than at a discrete 
point in the manufacturing process.

Figure 2-3. Bearing diameter distribution
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• Quality loss is a financial and societal loss.
• Minimization of quality loss is the only way to be competitive 

and survive in today’s competitive business environment.

EXPERIMENT DESIGN STRATEGY

Dr. Taguchi utilized a special set of orthogonal arrays (OAs) 
to lay out his experiments. The use of Latin squares orthogonal 
arrays for experiment designs dates back to the time of World War 
II. By combining the orthogonal Latin squares in a unique man-
ner, Taguchi prepared a new set of standard OAs to be used for a 
number of experimental situations. A common OA for two-level 
factors is shown in Table 2-1. This array, designated by the symbol 
L8 (or L-8), is used to design experiments involving up to seven 
two-level factors. The array has eight rows and seven columns. 
Each row represents a trial condition with factor levels indicated 
by the numbers in the row. The vertical columns correspond to 
the factors specified in the study.

The columns of all orthogonal arrays are balanced in two ways. 
First, the columns are balanced within themselves such that they 
all have an equal number of levels of the factor. Second, the col-
umns are balanced between any two columns such that together 
they form an equal number of possible combinations. For example, 
each column in an L8 array (Table 2-1) contains four one-level and 

Table 2-1. Orthogonal array L8(2
7)

A B C D E F G

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

FACTOR
TRIAL
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four two-level conditions for the factor assigned to the column. 
Two two-level factors combine in four possible ways, such as (1,1), 
(1,2), (2,1), and (2,2). When two columns of an array form these 
combinations the same number of times, the columns are said to 
be balanced or orthogonal. Note that any two columns of an L8
(27) array have the same number of combinations of (1,1), (1,2), 
(2,1), and (2,2). Thus, all seven columns of an L are orthogonal 
to each other.

The OA facilitates the experiment design process. To design 
an experiment is to select the most suitable orthogonal array, as-
sign the factors to the appropriate columns, and finally, describe 
the combinations of the individual experiments, called the trial 
conditions. Let us assume that there are at most seven two-level 
factors in the study. Call these factors A, B, C, D, E, F, and G
and assign them to columns 1, 2, 3, 4, 5, 6, and 7, respectively, 
of L8. The table identifies the eight trials needed to complete the 
experiment and the level of each factor for each trial run. The 
experiment descriptions are determined by reading the numerals 
1 and 2 appearing in the rows of the trial runs. Obviously, when 
in use for experiment design, the numbers in the columns of the 
orthogonal array represent the level of the factors assigned to the 
column. A full factorial experiment would require 27 or 128 runs 
but may not provide appreciably more useful information.

The array forces all experimenters to design almost identical 
experiments. Experimenters may select different designations for 
the columns, but the eight trial runs will include all combinations 
independent of column definition. Thus, the OA assures consis-
tency of design by different experimenters.

ANALYSIS OF RESULTS

In the Taguchi method, the results of the experiments are ana-
lyzed to achieve one or more of the following three objectives:

1. To determine the trend of influence of factors and interac-
tions under study.

2. To identify the significant factors and their relative influ-
ences on the variability of results.
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3. To establish the best or the optimum condition for a prod-
uct or a process, along with
• An estimate of contribution of individual factors.
• A prediction of expected response under the optimum 

conditions.
The optimum condition is identified by studying the main 

effects of each of the factors. The process involves minor arith-
metic manipulation of the numerical results for average effects 
of factor levels and usually can be done with the help of a simple 
calculator. The main effects indicate the general trend of the influ-
ence of the factors. Knowing the characteristic, that is, whether 
a higher or lower value produces the preferred result, the levels 
of the factors that are expected to produce the best results can 
be predicted.

The knowledge of the contribution of individual factors is a key 
to deciding the nature of the control to be established on a produc-
tion process. The analysis of variance (ANOVA) is the statistical 
treatment most commonly applied to the results of the experiment 
to determine the relative percent influence of an individual factor 
and to separate the significant factors from the insignificant ones. 
Study of the ANOVA table for a given analysis helps determine 
which of the factors need control and which do not.

Once the optimum condition is determined and expected per-
formance (predicted value) is estimated, it is usually a required 
and good practice to run a confirmation experiment. As additional 
information, performance at any of the full factorial conditions 
(128 for L-8 experiment) can also be calculated from the results 
of experiments conducted. It should be noted that the optimum 
condition may not necessarily be among the many experiments 
already carried out, as the OA represents only a small fraction of 
all the possibilities.

Taguchi suggests two different routes to carry out the com-
plete analysis. First, the standard approach, where the result of a 
single run, or the average of repetitive runs, is processed through 
main effect and ANOVA analyses, as identified above. The second 
approach, which Taguchi strongly recommends for multiple runs, 
is to use the signal-to-noise (S/N) ratio for the same steps in the 
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analysis. S/N analysis determines the most robust set of operating 
conditions from variations within the results.

AREAS OF APPLICATION

Analysis

In the design of engineering products and processes, analytical 
simulation plays an important role, transforming a concept into 
the final product design. The Taguchi approach can be utilized to 
arrive at the best parameters for the optimum design configura-
tion with the least number of analytical investigations. Although 
there are several methods available for optimization, using such 
simulations when the factors are continuous, the Taguchi method 
is the method that treats factors at discrete levels. Frequently this 
approach significantly reduces computer time.

Test and Development

Testing with prototypes is an efficient way to see how the 
concepts work when they are put into a design. Because experi-
mental hardware is costly, the need to accomplish the objectives 
with the least number of tests is a top priority. The Taguchi ap-
proach of laying out the experimental conditions with standardized 
orthogonal arrays significantly reduces the number of tests and 
the overall testing time.

Process Development

Manufacturing processes typically have a large number of 
factors that influence the final outcome. Identification of their 
individual contributions and their intricate interrelationships is 
essential in the development of such processes. The Taguchi con-
cepts used in such projects have helped many U.S. and Japanese 
companies realize significant cost savings in recent times.

Validation Testing

For many products, proper validation testing requires as-
surance of performance under numerous application factors 
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and durability life cycles. Many products also are designed to be 
robust against many known noise conditions. Use of the Taguchi 
approach to lay out structured test plans can potentially save costs 
for product assurance. 

Marketing and Advertising

While as a general capability for studying multiple variables 
at a time the experimental design technique always had potential 
for benefiting advertising and marketing efforts, it was not until 
Web-based advertising became popular in the late 1990s that 
the benefits of the DOE technique, particularly the Taguchi ap-
proach to experimental design, was demonstrated by many large 
consumer product companies. Today, many Web-based advertising 
companies routinely use the Taguchi DOE technique to optimize 
advertisement design or traffic.

Problem Solving

Production and manufacturing problems related to variations, 
rework, and rejects are common in industry. While many such 
issues may be resolved by common problem-solving disciplines, 
some require special techniques. Fortunately, the solution often 
is obtainable by properly adjusting many influencing factors 
rather than searching for innovative means. The Taguchi DOE 
is a powerful technique to investigate such technical issues and 
determine data-driven permanent solutions.

THE NEW APPROACH—ITS APPEAL AND LIMITATIONS

The Appeal

• Up-front improvement of quality by design and process 
development.

• Measurement of quality in terms of deviation from the 
target (loss function).

• Problem solution by team approach and brainstorming.
• Consistency in experimental design and analysis.
• Reduction of time and cost of experiments.
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• Design of robustness into product/process.
• Reduction of variation without removing its causes.
• Reduction of product warranty and service costs by ad-

dressing them with the loss function.

Taguchi’s design methodology, the common features of which 
are listed above, has wide-ranging applications. Generally speak-
ing, experimental design using OAs can be applied where there 
are a large number of design factors. Taguchi’s OAs for the design 
of experiments, signal/noise analysis, and cost guidance based on 
the loss function have made his approach increasingly popular 
among practicing engineers. Taguchi’s extension of loss beyond 
the production line has necessitated a team-based approach to the 
application of DOE techniques, and this approach has been found 
to be highly effective.

Limitations

The most severe limitation of the Taguchi method is the need 
for proactive thinking and working as a group to address the qual-
ity improvement issues early in the product/process development. 
The technique is most effective when applied before the design of 
the product/process system is released. After the design variables 
are determined and their nominal values are specified, experimen-
tal design may not be cost effective. Also, though the method has 
wide-ranging applications, there are situations in which classical 
techniques are better suited; for example, in simulation studies 
involving factors that vary in a continuous manner, such as the 
torsional strength of a shaft as a function of its diameter, the 
Taguchi method may not be the best choice.

EXERCISES

2-1. There are two types of losses that society incurs because of the
poor quality of a product. What are these losses?

2-2. Explain why the old definition of cost of quality is inad-
equate.

2-3. What is the most important idea of Taguchi’s concept of achiev-
ing higher product quality?
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2-4. Name three stages in the process of achieving desirable quality
by design.

2-5. List some areas in your field where the Taguchi approach can
be used to improve a product or the efficiency of a manufac-
turing process.

2-6. A manufacturer of hi-fi speakers uses a gluing operation at the
last stage in the manufacturing process. Recently, because of a 
change in the bonding agent, the quality of the bond has been
observed to be below specifications. Some engineers maintain
that the poor quality of the bond is attributable not to the change
of glue but rather to the accompanying application temperature.
A 2 × 2 factorial experiment including two different glues at two
application temperatures is planned. List at least three noise fac-
tors that may influence the outcome of the test.
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THE QUALITY CHARACTERISTIC

Every product is designed to perform some intended func-
tion. Some measurable characteristic, generally referred to as 
the quality characteristic, is used to express how well a product 
performs the function. Consider a light bulb; its quality can be 
measured in terms of its hours of life. For a machine automati-
cally producing 2.00 inch diameter shafts, the deviation from this 
target dimension may be a quality characteristic. In a majority 
of cases, the quality characteristic may be a single measurable 
quantity such as weight, length, hours, and so on. For some 
products, subjective measurements like “good,” “bad,” “low,” and 
“high” may be used. In other instances, subjective and objective 
evaluations may be combined into an Overall Evaluation Criteria 
(OEC, Chapter 8).

No matter how the quality of the product is measured—by a 
single criterion or by a combination of multiple criteria, the mea-
sure will possess one of the following three characteristics that 
indicates the direction of desirability of results:

• bigger is better
• smaller is better
• nominal is best

Suppose that we are investigating a pump to determine the 
best design parameters that produce the maximum flow rate. In 
this case, the quality of the design may be judged by the flow rate, 
measured in units of cubic feet per minute, which therefore will 
be of the characteristic “bigger is better.”
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If, on the other hand, the purpose of the study is to determine 
the least noisy pump, the noise measured in units of, say, decibels, 
will be of the type described by “smaller is better.” When the 
object or process under study has a target value, as for a battery 
of 9.0 volts or a process to machine a cylinder with a 3.00 inch 
inside diameter, the measure of quality will possess the “nominal 
is best” characteristic.

In general engineering practices, performance of a product or 
process is termed ‘result’ or ‘response’ and is expressed in terms 
of any suitable units of measurements. In scientific experimental 
studies involving DOE, the term quality characteristic (QC) is used, 
along with its two attributes: units of measure and the direction of 
desirability. For example, in a study to improve the power output 
of an internal combustion engine, the selected QC may be expressed 
as, QC: power generated (horsepower, bigger is better).

VARIATION AS A QUALITY YARDSTICK
Variation is the law of nature. In nature, no two objects are 

absolutely alike. They could be very similar, but hardly identical. 
No two people are exactly alike. No two apples have precisely the 
same weight. Mother Nature likes variety. Variations in nature 
are often obvious to the human eye.

Consider man/machine-made items. Superficially, parts look 
and function alike. However, when examined closely, manufac-
tured products also exhibit variation, which, unlike in nature, 
may not be obvious to the human eye. Two ballpoint pens of the 
same brand do not write in the same way; two light bulbs do not 
last the same amount of time; two appliances do not function in 
exactly the same manner; two engines of similar specifications do 
not perform identically. This is because products made for the same 
purpose will show factor influences and perform differently.

Generally speaking, the quality characteristic of a product 
varies in two ways. First, it differs from another of the same kind, 
and second, it differs from the desired (target) value. Consider five 
9-volt transistor batteries. When their voltages are measured ac-
curately with a voltmeter, they may display a range of 8.90, 8.95, 
8.99, 9.20, and 9.20 volts. All of the batteries may work well for 
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radios with a range of acceptance of 8.5 to 9.5 volts, exceeding the 
variation in these batteries. But for a sophisticated instrument, 
only batteries that exhibit a voltage very close to the target value, 
say, 8.95 to 9.05 volts, will operate the instrument properly. Bat-
teries with excessive deviations from the target value may produce 
unreliable readings or may even damage the instrument.

The first kind of variation can be displayed by comparing one 
item with another. The maximum voltage variation among the 
batteries is 0.3 (9.2 to 8.9) volts. Although all of the batteries are 
nominally rated at 9 volts, most of them will deviate from this 
value. The deviation from this target or nominal value consti-
tutes the other type of variation. These variations are shown in 
Figure 3-1. In Figure 3-1(a), the average value of the parameter 
deviates from the target value; the range of value (variation) is 
also excessive. Figure 3-1(b) shows the average on-target, but the 
variation is still excessive. Figure 3-1(c) illustrates the desired 
characteristic—on target and with narrow variation.

COST OF VARIATION
Early in his research, Dr. Taguchi observed that unexpected 

variation was common to all manufacturing processes and that it 
was the primary cause for rejection of parts. Parts were rejected 
upon inspection when they did not conform to a predefined speci-
fication. Rejection increases the cost of production. Often, 100% 
inspection is excessively costly or impractical; thus, a defective 
part may reach a customer and lead to warranty costs and cus-
tomer dissatisfaction. Taguchi held that variation is costly even 
beyond the immediate factory production cost and that excessive 
variation causes loss of quality. He contended that the cure for 
quality loss is reduction of variation. Thus, he recommended that 
effort should be directed toward minimizing variation, with less 
emphasis placed on production within fixed tolerance limits.

QUALITY AND VARIATION
Taguchi viewed variation as a lack of consistency in the product, 

giving rise to poor quality. With this view, he developed methodologies 
aimed at reducing both of the elements of variation—(a) deviation 
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from the target and (b) variation with respect to others in the 
group. In Figure 3-2, a typical quality measure of a product (similar 
to Bearing Dimension discussed in Chapter 2) is compared with 
the desired state. Note that the product mean value is off target 
and that the variation around the mean is large, though within 
upper and lower acceptance limits. A much narrower distribution 

Figure 3-1. Typical quality distributions
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is desired, with more frequent achievement of the target value and 
smaller variation around the target value.

How is this accomplished? What does it mean in terms of cost 
savings? The financial implications of variation will be covered in 
a later chapter. In this chapter, we will discuss in detail Taguchi’s 
approach to variation reduction.

THE QUALITY WE ARE AFTER

The quality of a product or a process may be difficult to define 
in quantitative terms. Quality is what the customers perceive it to 
be; thus, quality varies from product to product and from customer 
to customer. The criteria customers use to judge the quality of a 
product are related to the satisfaction derived from the product 
and are numerous and often difficult to quantify. Research has 
shown that a lack of product consistency is a major factor in the 

Figure 3-2. Representation of the Taguchi approach
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perception of poor quality. Consistency (reduced level of variation) 
favorably affects most common elements of quality. To custom-
ers, quality may include service after delivery, ease of assembly, 
product performance, frequency of maintenance, and so on. Our 
focus is the element of quality reflected by the performance of a 
product or service. The Taguchi approach for reducing variation 
in performance is a two-step process:

1. Make the product/process perform in the best manner most 
of the time (less deviation from the target).

2. Make all products perform as identically as possible (less 
variation between the products).

TAGUCHI QUALITY STRATEGY

Taguchi’s approach to enhance quality in the design phase 
involves two steps:

1. Optimizing the design of the product/process (system 
approach).

2. Making the design insensitive to the influence of uncon-
trollable factors (robustness).

When a product is optimum, it performs best under the 
available operating conditions. Depending on the specified per-
formance, the optimum will imply that the product has achieved 
the most, the least, or the target value of the quality measure. 
Optimizing the design of a product means determining the right 
combination of ingredients or making the proper adjustments to 
the machine so that the best results are obtained.

Consider a baking process. Assume several bakers are given 
the same ingredients to bake a pound cake, the object being to 
produce the best-tasting cake. Within limits, they can adjust the 
amount of ingredients, but they can only use the ingredients 
provided. They are to make the best cake within available design 
parameters. Taguchi’s approach would be to design an experi-
ment considering all baking ingredients and other influencing 
factors, such as baking temperature, baking time, oven type (if a 
variable), and so on.
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SELECTING DESIGN PARAMETERS FOR REDUCED VARIATION
In the last section, quality according to Taguchi’s methodol-

ogy was defined. Taguchi strives to attain quality by reducing 
the variation around the target. In an effort to reduce variations, 
he searched for techniques that allow variability to be reduced 
without necessarily eliminating the causes of variation. Often in 
an industrial setting, totally removing the causes of variation can 
be expensive. A no-cost or low-cost solution may be achieved by 
adjusting the levels and controlling the variation of other factors. 
This is what Taguchi tries to do through his Parameter Design
approach. There is no cost or low cost in reducing variability in pa-
rameter design. Furthermore, the cost savings realized far exceed 
the cost of additional experiments needed to reduce variations.

The Taguchi method is most effective when applied to ex-
periments with multiple factors. But the concept of selecting 
the proper levels of design factors, and reducing the variation of 
performance around the optimum/target value, can be easily il-
lustrated through an example involving only one factor.

An electronic circuit that controlled the color characteristics 
of a television set was significantly influenced by the line voltage. 
The experimenter, wishing to select the right voltage, investigated 
the color quality at several input voltages. The influence of voltage 
variation on color quality is shown in Figure 3-3. If the desirable 
range of voltage for circuit design is between VC and VD, then what 
voltage should be specified for the circuit? Obviously, the choice 
should be a point within working voltage range VC and VD that 
provides stable color quality. In Taguchi terminology, one would 
look for the input voltage that reduces variation of the color qual-
ity. The experimenter would initially select a voltage at point B,
so the variation around B, say, to B  or B , would minimally affect 
the output, that is, the color quality. Voltage B is highly attractive 
because small fluctuations in the line voltage (B  to B ) will not 
significantly affect the color quality of the TV as perceived by the 
customer-user.

The objective for products involving multiple factors is similar 
but slightly more complex. The idea is to combine the factors at 
appropriate levels, each within the respective acceptable range, 
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to produce the best result and yet exhibit minimum variation 
around the optimum result.

To see how the Taguchi technique is used for many factors, 
consider once again the process of determining the best recipe for 
a pound cake (Figure 3-4). The objective is to determine the right 
proportions of the five major ingredients—eggs, butter, milk, flour, 
and sugar, so that the recipe will produce the best cake most of the 
time (Figure 3-5). Based on the past experience of involved team 
members, the working ranges of these factors are established at the 
levels as shown in Figure 3-6. At this point, we face the following 
questions. How do we do determine the right combination? How 
many experiments do we need to run and in what combination?

COMMON TERMINOLOGY

The technique for laying out the conditions of experiments 
when multiple factors are involved has been known to statisti-
cians for a long time. The technique was first introduced by 

Figure 3-3. Color quality response curve
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Sir Ronald A. Fisher in England in the 1920s and is popularly 
known as the factorial design of experiments. The method helps 
an experimenter determine the possible combinations of factors 
and to identify the best combination. To determine the optimum 
combination, Dr. Taguchi prescribes carrying out a number of 
experiments under the conditions defined by the rules he has 

Figure 3-4. Cake baking experiment

How much milk, butter, flour,
sugar, eggs, etc.,

make the best cake?

Figure 3-5. Desirable result of an optimized baking process

The best pound cake
I've ever tasted!
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developed. In experimental layout, he uses the same principles as 
that of factorial design, except that his methods are much simpli-
fied and standardized.

In the cake example, with five factors each at two levels, there 
are 32 (25) combinations of all possible factors and levels. If we 
could bake 32 cakes, we would surely find the best-tasting one 
among these 32 cakes, and we would know the impact of each 
ingredient level on taste. For most industrial situations, carrying 
out a large number of experiments is not feasible.

Taguchi accomplishes the same objective with a smaller num-
ber of tests. He selects a particular eight-trial fractional factorial 
design (orthogonal array) that produces the most information 
regarding the best-tasting cake. The factor/level combinations for 
these eight experiments are defined by using the L8 (2

7) orthogonal 
arrays. This orthogonal array (OA) is a table of eight rows and 
seven columns of numbers developed to design experiments with 
seven two-level factors. Orthogonal arrays are products of many 
years of statistical research that bears a high degree of confidence. 
They are so constructed such that the columns are balanced (equal 
number of levels) within each column, and also the columns are 
balanced (equal number of level combinations) between any two 

Ingredients How much/How many?

A. Eggs

B. Butter

C. Milk

D. Flour

E. Sugar

A1 A2

B1 B2

C1 C2

D1 D2

E1 E2

Figure 3-6. Factors and levels for a pound cake experiment
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columns. Thus, an experiment planned using the balanced orthogo-
nal arrays provides statistically meaningful results.

An OA experiment design leads to reduction of variation caused 
mainly by controllable factors. Uncontrollable factors (noise, dust, 
and so on) can be handled in two ways. First, the experiment trial 
can be repeated at different noise conditions. Second, the noise 
factors can be included in a second orthogonal array (called an 
outer array), which is used in conjunction with an inner array, 
the array of controllable factors.

Because OAs are used to define the unique experimental 
conditions as well as the noise factors, Taguchi calls the former 
design inner array and the latter outer array. When outer array 
experiments are performed, or when there are multiple samples 
tested in the individual experimental condition, the analysis in-
volves transformation of the results into a signal-to-noise ratio 
(S/N). S/N follows a transformation of the trial results into a loga-
rithmic scale, which changes the results of unknown nonlinear 
behavior into a linear relationship with the influencing factors. 
This process identifies the optimum condition and the expected 
performance with the least variability of the controllable as well 
as the uncontrollable factors.

The actual steps involved in designing the experiments using 
inner and outer arrays will be discussed in Chapter 5.

EXERCISES

3-1. How does Taguchi’s view of quality differ from the conventional
practice?

3-2. How does variation affect cost and quality?
3-3. What are the main causes of variation?
3-4. How is a product design optimized?
3-5. How does Taguchi make the design less sensitive to the noise

factors?
3-6. What are orthogonal arrays?
3-7. What is implied by the term parameter design and what is its

significance in achieving higher product quality?
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THE NEW DISCIPLINE

The Taguchi method offers two new powerful elements. 
First, the method is a disciplined way of developing a product or 
investigating complex problems. Second, it provides a means to 
cost-effectively investigate the available alternatives. Although 
Dr. Taguchi’s method was built on well-developed concepts of 
optimization through the design of experiments, his philosophy 
regarding the value of quality and the procedure for carrying out 
experiments were new. The power and popularity of the method 
lies in the discipline rather than the technique itself. The at-
tractiveness and the resultant potential for cost savings will be 
reviewed in this chapter.

The technique is applied in five steps, as follows:

1. Brainstorm the quality characteristics and design param-
eters important to the product/process under study.

2. Design the experiment and prescribe individual test recipes.
3. Conduct the experiments.
4. Analyze the results to determine the optimum conditions.
5. Run a confirmatory test(s) using the optimum conditions.

These steps are contrasted with typical current practice in 
Figure 4-1.

Brainstorming is a necessary and important step in the 
application process. The nature and content of the brainstorming is 
dependent on the type of project under study. Taguchi recommends 
the participation of all relevant functional organizations, including 
marketing. Suggested steps for brainstorming (experiment 
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planning) for Taguchi experiment designs, along with some general 
guidelines, are described in Chapter 8.

Taguchi experiments are designed according to some strict 
rules. A set of orthogonal arrays (OAs) is used to design the ex-
periments. A single OA may accommodate several experimental 
situations. Commonly used OAs are available for two-, three-, and 
four-level factors. Some standard arrays accommodate factors of 
mixed levels. In many situations, a standard OA is modified to suit 
a particular experiment that requires factors of mixed levels. The 
process of experiment design includes selecting the suitable OA, 
assigning the factors to the appropriate columns, and determining 
the conditions for the individual experiments. When noise factors 
are included in the experiment, the noise factor condition for each 
individual experiment is also determined.

Figure 4-1. Comparison of current practice and the Taguchi approach

Current Practice
(Series Approach)

Some
thinking

More
thinking

Test

Test

Let’s try this

Let’s try that

1. What is the Quality Characteristic?
2. What are the Design Parameters?

Brainstorming!

Taguchi Approach
(Parallel Process)

Analysis of results

• • •

Confirmation
test• • •
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The experiment so designed requires a fixed number of in-
dividual experiments, called trial conditions, to be carried out. 
Depending on the need for variability and noise effects, each trial 
is tested using multiple samples. When possible, all experiments 
are carried out in random order. The most common practice is to 
randomize the order of running the trial conditions and complete 
all sample tests for the trial in sequence (called repetition).

The results of the Taguchi experiments are analyzed in a 
standard set of phases. First, the factorial effects (main effects) 
are evaluated, and the influence of the factors is determined in 
qualitative terms. The optimum condition and the performance at 
the optimum condition are also determined from the factorial ef-
fects. In the next phase, analysis of variance (ANOVA) is performed 
on the result. ANOVA study identifies the relative influence of 
the factors to the variation of results in discrete terms. When the 
experiments include multiple runs and the results are measured 
in quantitative terms, Taguchi recommends signal-to-noise (S/N) 
ratio analysis. In S/N analysis, the multiple results of a trial condi-
tion are first transformed into S/N ratios and then analyzed.

In the concluding phase of the experimental study, the opti-
mum design identified in the analysis should be tested to confirm 
that performance observed indeed is the best and that it closely 
matches the performance predicted (estimated) by analysis.

UP-FRONT THINKING

The value of brainstorming in product development or for 
solving complex problems is well known, yet it was rarely used for 
engineering problems. Brainstorming prior to an experiment is a 
necessary requirement in the Taguchi approach; however, Taguchi 
does not give any guidelines for conducting brainstorming for an 
experiment. The content and outcome of a brainstorming session 
is largely dependent on the nature of a project and, as such, is a 
technique learned primarily by experience. Most application spe-
cialists consider brainstorming to be the most important element 
in deriving benefits from the Taguchi method.

Taguchi brings a new breadth to planning experimental stud-
ies. Experimenters think through the whole process before starting 
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the tests. This helps to decide which factors are likely to be most 
important, how many experiments are needed, and how the results 
would be measured and analyzed—before actually conducting any 
experiment. Figure 4-1 shows the typical steps followed by experi-
menters—some initial thinking, followed by some testing, which, in 
turn, is followed by some more thinking, and so on. In the Taguchi 
approach, the complete plan of how to test, what to test, and when 
to analyze the results will all be decided beforehand. Ideally, an ex-
periment planning (brainstorming) session will rely on the collective 
experience of the group to determine the factors to be selected for 
testing in an appropriate design. Practice of the Taguchi method 
fosters a team approach to design optimization because participa-
tion of people from engineering, manufacturing, testing, and other 
activities may be necessary for complete variable identification.

EXPERIMENTAL EFFICIENCY

In most cases, the Taguchi experiment design using an orthogo-
nal array requires the least number of test runs. A full factorial 
experiment with 15 factors at two levels each is performed with  
a test matrix with 32,768 (215) test runs. A fractional factorial 
experiment with an orthogonal array suitable for 15 two-level 
factors consists of only 16 test runs.

The experimental efficiency Taguchi offers can be described 
using the following analogy. Assume that you are asked to catch a 
big fish from a lake with a circular net. You are also told that the 
fish usually stays around its hideout, but you have no knowledge 
of where this place is. How do you go about catching this fish? 
Thinking analytically, you may first calculate the area of the net 
and the lake and then lay out an elaborate scheme to cover the 
entire lake. You may find, after all this planning, that you need 
the whole day to locate the spot where the fish is. Wouldn’t it 
be nice to have a fish finder that could tell you the approximate 
locations of where to throw your net? The Taguchi approach in 
experimental studies, to a great extent, works like a fish finder. 
It tells you which areas to try first, and then from the results of 
the trials you determine, with a high degree of certainty, the most 
probable location of the fish.
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EFFECTIVE USE OF STATISTICAL PROCESS CONTROL

After design and development comes production. When we 
complete the Taguchi experimental studies, it is time for sta-
tistical process control (SPC). But where do we apply controls? 
Should we control all factors across the board? If we knew which 
factors were most significant, it would be wise to pay more at-
tention to them. The information about the relative influence 
of individual factors to the variability of results is obtained by 
analysis of variance of the experimental results. This knowledge 
about the factor influence is used to objectively determine which 
factors to control and the amount of manufacturing process ad-
justment necessary.

LONG-TERM BENEFITS

Most of the benefits of quality improvement effort in the 
design stage come after the product is put in use. The reduced 
variation, a characteristic that is designed in through the optimum 
combination of the factors, will yield consistent performance of 
the product. This means that more of the products will perform 
as designed. There will be happier customers and, therefore, less 
warranty costs and increased sales.

QUANTIFYING COST BENEFITS—TAGUCHI LOSS FUNCTION

As indicated earlier, the major attraction of the Taguchi ap-
proach is the discipline it introduces in the engineering practices, 
rather than in direct benefits in time and cost savings. The value of 
the discipline is extremely hard to quantify. The direct cost savings 
in terms of a better product or process, on the other hand, can be 
experienced in due course of time after the product is sold. Can 
this potential cost savings be estimated before production begins? 
Dr. Taguchi suggests a way of quantifying such cost savings. He 
uses his loss function concept to estimate the potential savings 
based on the improvement achievable if the product were designed 
to the optimum condition prescribed by his approach.

Suppose XYZ Co., a manufacturer of a 9.00-volt transistor 
battery, applied the Taguchi method to improve the quality of its 
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product. Before the experiment, a measured sample of 10 batteries 
had the following voltages:

BEFORE EXPERIMENT

Voltages

8.10 8.25 8.90 8.68 8.35

9.25 9.05 8.85 8.45 8.90

With the target value of 9.00 volts, the above measured values pro-
duce characteristics as shown below (also see Tables 4-1 and 4-2).

Average value = 8.67
Standard deviation = 0.37

Mean square deviation (MSD) = [(8.1 − 9.0)2 + (9.25 − 9.0)2

  + … + (8.90 − 9.0)2]/10
 = 0.23

S/N ratio = −10 log10 (MSD)
 = 6.36

After the experiment, a batch of 10 batteries showed the fol-
lowing characteristics:

AFTER EXPERIMENT

Voltages

9.10 8.93 8.69 8.92 9.08

8.08 9.02 8.91 9.15 9.25

Average value = 8.99

Standard deviation = 0.1598

Mean square deviation = 0.023

S/N ratio = 16.37

The signal-to-noise (S/N) ratio expresses the scatter around a 
target value. The larger the ratio, the smaller the scatter. Taguchi’s 
loss function can be expressed in terms of MSD and, thus, S/N 
ratios. Knowing the S/N ratios of the samples before and after the 
experiment, Taguchi’s loss function may be used to estimate the 
potential cost savings from the improved product.
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Table 4-1. Standard statistical data before experiment

Observation No. 1 = 8.100
Observation No. 2 = 8.900
Observation No. 3 = 8.450
Observation No. 4 = 9.250
Observation No. 5 = 8.860
Observation No. 6 = 8.350
Observation No. 7 = 8.250
Observation No. 8 = 8.680
Observation No. 9 = 8.900
Observation No. 10 = 9.050

Target/nominal value of result (Y0) = 9.00
Number of test results (NR) = 10

AVERAGE AND STANDARD DEVIATION:
Total of all test results = 86.79001
Average of test results = 8.679001
Standard deviation (SD) = 0.376252
Variance = 0.141565

LOSS FUNCTION PARAMETERS:
Mean square deviation (MSD) = 0.230449
Signal-to-noise (S/N) ratio = 6.374235
Variance (modified form) = 0.127409
Square of mean value = 0.103041

VARIANCE DATA (ANOVA):
Target value of data/test result = 9.00
Mean of data/deviation from target = –0.321
Total variance (ST)
(ST = variance * NR) = 1.274089
Correction factor (CF)
(CF = (average of data)2 * number of data) = 1.030404
Sums of squares/N = 2.304499

DEFINITIONS:

Standard deviation (SD) =

Variance = (SD)2

Mean square deviation (MSD) =

Signal/noise (S/N) ratio = –10 log10 (MSD)
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Table 4-2. Standard statistical data after experiment

Observation No. 1 = 9.100
Observation No. 2 = 9.080
Observation No. 3 = 8.910
Observation No. 4 = 8.940
Observation No. 5 = 8.880
Observation No. 6 = 9.150
Observation No. 7 = 8.690
Observation No. 8 = 9.020
Observation No. 9 = 9.250
Observation No. 10 = 8.920

Target/nominal value of result (Y0) = 9.00
Number of test results (NR) = 10

AVERAGE AND STANDARD DEVIATION:
Total of all test results = 89.93999
Average of test results = 8.993999
Standard deviation (SD) = 0.159875
Variance = 0.025560

LOSS FUNCTION PARAMETERS:
Mean square deviation (MSD) = 0.023040
Signal-to-noise (S/N) ratio = 16.37517
Variance (modified form) = 0.023040
Square of mean value = 3.6006E-05

VARIANCE DATA (ANOVA):
Target value of data/test result = 9.00
Mean of data/deviation from target = –6.00004E-03
Total variance (ST)
(ST = variance * NR) = 0.230040
Correction factor (CF)
(CF = (average of data)2 * number of data) = 3.6006E-04
Sums of squares/N = 0.230040

Before estimates of savings can be made, some other pertinent 
information needs to be gathered. Assuming the usual statistical 
distribution of results, the two samples will exhibit the curve 
shown in Figure 4-2. The producer, XYZ Co., makes 100,000 units 
of the batteries per month, which sell for $1.25 each. For most 
customer applications, the battery voltage should be within ±1.00 
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volt, that is, between 8.00 and 10.00 volts. If the voltage is beyond 
this range, customers request a refund ($1.25).

Taguchi’s approach to the computation of cost savings is based 
on determining the refund cost associated with the variation of 
the batteries, as measured by the mean square deviation (MSD) 

Figure 4-2. Manufacturer and supplier tolerance
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from the target voltage. Obviously, the greater the variation the 
more likely that some batteries will exceed the limits of customer 
acceptance. With the above information, the loss is computed as 
$.288 per battery for the sample before the experiment and $.028 
per unit for the sample after the experiment. Because 100,000 
units are manufactured per month, the total savings per month 
is estimated to be $25,950.90 (Figure 4-3).

Figure 4-3. Calculation of cost savings
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CALCULATION OF LOSS

PROBLEM DEFINITION
Target value of quality characteristic ( ) = 9.00
Tolerance of quality characteristic = 1.00
Cost of rejection at production (per unit) = $1.25
Units produced per month (total) = 100,000
S/N ratio of current design/part = 6.37
S/N ratio of new design/part = 16.37

COMPUTATION OF LOSS USING TAGUCHI LOSS FUNCTION
Loss function: ( ) = 1.25 x (MSD) Also ( ) = K x ( )

BEFORE EXPERIMENT:
Loss/unit due to deviation from target in current design = $0.288

AFTER EXPERIMENT:
Loss/unit due to deviation from target in new design = $0.028

MONTHLY SAVINGS:
If production is maintained at the improved condition,
then based on 100,000 units/month = $25,950.90
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AFTER EXPERIMENT
Average = 8.99
Standard deviation = 0.1598
MSD = 0.023
S/N = 16.37

BEFORE EXPERIMENT
Average = 8.67
Standard deviation = 0.37
MSD = 0.23
S/N = 6.36
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SPECIFYING TOLERANCE LEVELS

Another application of Taguchi’s loss function formulation is in 
determining the levels of tolerances for various inspection points 
of the production process. Suppose that the manufacturer, XYZ 
Co., is well aware of the losses in the current production samples 
(before experiment). The company wishes to reduce the warranty 
costs and expects to keep its customers satisfied. But the company 
does not want to disturb the current design and production line. It 
is, however, willing to explore ways to screen out the bad products. 
The loss function offers some help here.

Let’s say XYZ Co., as the manufacturer of batteries, has a 
producer who supplies the chemicals needed. Upon investigation, 
XYZ Co. determines that the chemical supplied by the ABC Co. 
is substandard and is the cause of voltage variation. The manu-
facturer has two options available. It can inspect the production 
with the hope to screen out all of the bad products. Or it can ask 
the supplier to prescreen the material so inspection of the product 
becomes unnecessary. In either case, the manufacturer needs to 
establish the limits to which the batteries have to conform. The 
customer tolerance is established, ±1.00 volt. Company XYZ 
must establish a manufacturer tolerance that it will use in the 
plant, and a tolerance will also be set for the supplier ABC to use 
for inspection. Taguchi determines these tolerances based on the 
cost of rejection at the two places. Because the cost of rejecting a 
finished part is probably greater than the cost of rejection of an 
ingredient, the tolerances for the manufacturer and the supplier 
will differ from that of the customers.

In addition to what is already known about the product (battery), 
two more pieces of information are needed for this calculation:

— cost of rejection/replacement at the manufacturer, and 
— cost of rejection/replacement at the supplier.

Suppose that a part costing 20 cents from a supplier can pro-
duce a loss of 50 cents to the manufacturer if the part fails. The 
loss equations will produce tolerances of ±0.63 volts and ±0.4 volts 
for the manufacturer and the supplier, respectively, as shown in 
Figure 4-2. Either the supplier or the manufacturer can screen the 
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products. To assure defect-free products, the supplier may screen 
them before they are shipped to the manufacturer, who in turn 
passes them to the customers. When a supplier doesn’t screen, 
the manufacturer must. (The calculations shown in Figs. 4-2 and 
4-3 are obtained by using the computer software in [7].)

EXERCISES

4-1. The Taguchi method is considered a technique that helps build
quality into a product or process. Explain what aspect of quality
it influences and how.

4-2. Compare the roles of the Taguchi method with that of statisti-
cal process control (SPC) in a manufacturing process. Explain
how the Taguchi method can influence decisions in the SPC
activities.
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FORMULAS FOR EXPERIMENT LAYOUT

It should be quite clear by now that the Taguchi method is 
intended for improving the quality of products and processes 
where the performance depends on many factors. In laying out 
a test and development strategy, simple logic will usually be suf-
ficient to establish all possible combinations of factors along with 
allowable ranges of each of the factors involved. Unfortunately, 
for engineering projects involving many factors, the number of 
possible combinations is prohibitively large. In addition, higher-
order interactions among the influencing factors may be needed 
for specific projects. A customary method of reducing the num-
ber of test combinations is to use what are known as partial (or 
fractional) factorial experiments. To secure more economical test 
plans, Dr. Taguchi constructed a special set of general designs for 
factorial experiments that cover many applications. The special set 
of designs consists of tables of numbers called orthogonal arrays 
(OAs). The use of these arrays helps determine the least number 
of experiments needed for a given set of factors. The details of 
using standard (not modified) OAs in designing experiments for 
a given set of factors is the subject of this chapter.

The OAs provide a recipe for fractional factorial experiments, 
which satisfy a number of situations. When a fixed number of 
levels for all factors is involved and the interactions are unimport-
ant, standard OAs will satisfy most experimental design needs. 
A modification of the OAs becomes necessary when factors with 
mixed levels and interactions are present. Simple designs with a 
smaller number of factors, at fixed levels, will be discussed first.
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BASIC METHODOLOGY

The technique of laying out the conditions (designs) of experi-
ments involving multiple factors was first proposed by Sir Ronald 
A. Fisher of England in the 1920s. The method is popularly known 
as the factorial design of experiments. A full factorial design will 
identify all possible combinations for a given set of factors. Because 
most industrial experiments usually involve a significant number 
of factors, a full factorial design results in a large number of experi-
ments. For example, in an experiment involving seven factors, each 
at two levels, the total number of combinations will be 128 (27). To 
reduce the number of experiments to a practical level, only a small 
set from all of the possibilities is selected. The method of selecting 
a limited number of experiments that produces the most informa-
tion is known as a fractional factorial experiment. Although this 
shortcut method is well known, there are no general guidelines for 
its application or the analysis of the results obtained by performing 
the experiments. Dr. Taguchi’s approach complements these two 
important areas. First, he clearly defined a set of OAs, each of which 
can be used for many experimental situations. Second, he devised 
a standard method for analysis of the results. The combination of 
standard experimental design techniques and analysis methods in 
the Taguchi approach produces a higher degree of consistency and 
reproducibility of the predicted performance.

Before discussing how the Taguchi approach reduces the num-
ber of experiments, it is helpful to understand how all possible 
combinations result from a set of factors.

Suppose we are concerned about one factor, A (say, tempera-
ture). If we were to study the effect of A on a product at two levels, 
say, 400°F and 500°F, then two tests become necessary:

Level 1 = A1 (400°F) and Level 2 = A2 (500°F)
Consider now two factors, A and B, each at two levels (A1, A2

and B1, B2). This produces four combinations because at A1, B can 
assume values B1 and B2, and at A2, B can again assume values 
B1 and B2.

Symbolically, these combinations are expressed as follows:

A1(B1, B2), A2(B1, B2), or as A1B1, A1B2, A2B1, A2B2
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With three factors, each at two levels, there are 23 (8) possible 
experiments, as described in the previous section. If A, B, and C
represent these factors, the eight experiments can be expressed 
as follows:

A1B1C1, A1B1C2, A1B2C1, A1B2C2, A2B1C1, A2B1C2, A2B2C1, and A2B2C2

Using the above general rule, the total number of experiments 
possible for different numbers of factors at two or three levels and 
the corresponding suggested Taguchi number of experiments are 
shown in Table 5-1.

A factorial experiment of seven factors (A, B, C, D, E, F, G), at 
two levels of value each (1 and 2), with 128 possible combinations, 
is represented by Table 5-2(a). Each of the 128 cells corresponds 
to a unique combination of the factors. As shown in Table 5-2(b), 
cells T1 through T8 indicate the eight trial numbers defined by 
Taguchi’s fractional factorial OA for this experiment.

Taguchi established OAs that can each be used to lay out tests 
suitable for a large number of experimental situations. The sym-
bolic designation for these arrays carries the key information on 
the size of the experiment. The array of Table 5-2(b) is designated 
as L-8 or L8. The number 8 indicates that eight trials are needed. 
The next lower size of the OA is L4. An L4 experiment requires 
four trial runs. This array handles up to three factors at two levels 
each. To fit a situation with factors between four and seven, all at 

Table 5-1. Comparison of full factorial design and Taguchi design
TOTAL NUMBER OF EXPERIMENTS

FACTORS LEVELS FULL FACTORIAL DESIGN TAGUCHI DESIGN

2 2 4 (22) 4

3 2 8 (23) 4

4 2 16 (24) 8

7 2 128 (27) 8

15 2 32,768 (215) 16

4 3 81 (34) 9
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Table 5-2. Experiment layouts using an L8 array

(a) Experiment structure

FULL
FACTORIAL

EXPERIMENTS

A1 A2

B1 B2 B1 B2

C1 C2 C1 C2 C1 C2 C1 C2

D1

E1

F1

G1 T1

G2

F2

G1

G2 T3

E2

F1

G1

G2 T5

F2

G1 T7

G2

D2

E1

F1

G1

G2 T8

F2

G1 T6

G2

E2

F1

G1 T4

G2

F2

G1

G2 T2

(b) Trial runs and conditions

COLUMN

FACTOR

TRIAL

1

A

2

B

3

C

4

D

5

E

6

F

7

G

T1 1 1 1 1 1 1 1

T2 1 1 1 2 2 2 2

T3 1 2 2 1 1 2 2

T4 1 2 2 2 2 1 1

T5 2 1 2 1 2 1 2

T6 2 1 2 2 1 2 1

T7 2 2 1 1 2 2 1

T8 2 2 1 2 1 1 2
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two levels, an L8 will be used. For situations demanding a larger 
number of factors—higher levels as well as mixed levels, a number 
of other OAs are available [10].

Experiment designs by OAs are attractive because of experi-
mental efficiency, but there are some potential trade-offs. Gener-
ally speaking, OA experiments work well when there is minimal 
interaction among factors; that is, the factor influences on the 
measured quality objectives are independent of each other and are 
linear. In other words, when the outcome is directly proportional 
to the linear combination of individual factor main effects, OA de-
sign identifies the optimum condition and estimates performance 
at this condition accurately. If, however, the factors interact with 
each other and influence the outcome, there is still a good chance 
that the optimum condition will be identified accurately, but the 
estimate of performance at the optimum can be significantly off. 
The degree of inaccuracy in performance estimates will depend on 
the degree of complexity of interactions among all the factors.

DESIGNING THE EXPERIMENT

The word “design” in the expression design of experiments is 
used in a general sense to convey “a planned project or a scheme 
in which the means to an end are laid down.” To design the experi-
ment is to develop a scheme or layout of the different conditions 
to be studied. In engineering, the word takes on a special meaning 
when used as “a design,” “product design,” or “process design.” 
In these expressions, design refers to some form of an engineer-
ing communication, such as a set of specifications, drawings, or 
physical models that describe a concept. Consider a statement like, 
“The Taguchi design of experiments can be used to optimize many 
designs.” The final “design” in this sentence obviously refers to 
some engineering design process.

An experiment design must satisfy two objectives. First, the 
number of trials must be determined. Second, the conditions for 
each trial must be specified. Taguchi’s arrays are versatile recipes 
that apply to several experimental conditions. For example, the 
design for experiments involving 4, 5, 6, or 7 two-level factors 
may all be accomplished by using the same orthogonal array (L8). 
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The OAs contain information on both the number as well as the 
configurations of the experiments.

Before designing an experiment, knowledge of the product/
process under investigation is of prime importance for identifying 
the factors likely to influence the outcome. To compile a compre-
hensive list of the factors, the input to the experiment is generally 
obtained from all of the people involved in the project. Dr. Taguchi 
found brainstorming to be a necessary step for determining the 
full range of factors to be investigated.

Consider Example 5-1.

Example 5-1
An experimenter has identified three controllable factors for 

a plastic molding process. Each factor can be applied at two levels 
(Table 5-3). The experimenter wants to determine the optimum 
combination of the levels of these factors as well as the contribu-
tion of each to product quality.

Experiment Design
There are three factors, each at two levels, thus an L4 will be 

suitable, per Table 5-1. An L4 OA with spaces for the factors and 
their levels is shown in Table 5-4. This configuration is a conve-
nient way to lay out a design. Because an L4 has three columns, 
the three factors can be assigned to these columns in any order. 
Having assigned the factors, their levels can also be indicated in 
the corresponding column.

There are four independent experimental conditions in an L4.
These conditions are described by the numbers in the rows. For an 
experienced user of the technique, an array with factors assigned 
as shown in Table 5-2 contains all of the necessary information; 

Table 5-3. Molding process factors and levels—Example 5-1
FACTOR LEVEL 1 LEVEL 2

A. Injection pressure A1 = 250 psi A2 = 350 psi

B. Mold temperature B1 = 150°F B2 = 200°F

C. Set time C1 = 6 sec. C2 = 9 sec.
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for others, a descriptive arrangement of the factors constituting 
different conditions of the experiment may be helpful. In this case, 
the four conditions can be spelled out as follows:

Experiment 1
Injection pressure at 250 psi, that is, A1

Mold temperature at 150°F, that is, B1

Set time   at 6 sec., that is, C1

Experiment 2
Injection pressure at 250 psi, that is, A1

Mold temperature at 200°F, that is, B2

Set time   at 9 sec., that is, C2

Experiment 3
Injection pressure at 350 psi, that is, A2

Mold temperature at 150°F, that is, B1

Set time   at 9 sec., that is, C2

Experiment 4
Injection pressure at 350 psi, that is, A2

Mold temperature at 200°F, that is, B2

Set time   at 6 sec., that is, C1

Table 5-4. Experiment layout using an L4 array—Example 5-1
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Order of Running the Experiments

Whenever possible, the trial conditions (the individual com-
binations in a designed experiment) should be run in a random 
order to avoid the influence of experiment setup. If only one run 
for each of the above conditions is planned, they could be run as 
experiment 2, 4, 3, and 1, or in any other random order. If, on the 
other hand, multiple repetitions are planned, say three runs for 
each of the four conditions, then there are two ways to proceed.

Replication

In this approach, all of the trial conditions will be run in a 
random order. One way to decide the order is to randomly pull 
one trial number at a time from a set of trial numbers, including 
repetitions. Often a new setup will be required for each run. This 
increases the cost of the experiment.

Repetition

Each trial is repeated as planned before proceeding to the next 
trial run. The trial run sequence is selected in a random order. 
For example, given the trial sequence 2, 4, 3, and 1, three suc-
cessive runs of trial 2 are made, followed by three runs of trial 4, 
and so on. This procedure reduces setup costs for the experiment. 
However, a setup error is unlikely to be detected. Furthermore, 
the effect of external factors such as humidity, tool wear, and so 
on, may not be captured during the successive runs if the runs 
are short in duration.

Analysis of Results

Although, a detailed analysis of the results will be discussed in 
Chapter 6, a brief description and objectives of such an analysis 
are introduced here.

Following the specifications as prescribed above, the experi-
menter conducted the four trials. The molded products were then 
evaluated, and the results, in terms of a quality characteristic, Y,
were measured as shown below:

Y1 = 30, Y2 = 25, Y3 = 34, Y4 = 27
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These results are recorded in the right-most column of the OA 
(Table 5-5). Because there was only one test sample in each trial 
condition, the results are recorded in one column. For each repeti-
tion of the experiment, there will be another column of results.

To speed up analysis, the Taguchi approach provides some key 
procedures. When these steps are strictly followed by different 
individuals performing the analysis, they are likely to arrive at 
the same conclusions. The objective of the analysis of the Taguchi 
experimental results is primarily to seek answers to the following 
three key questions:

1. What is the optimum condition?
2. Which factors influence the variability of results and by 

how much?
3. What will be the expected result at the optimum condi-

tion and how much does each factor contribute to the 
improvement?

The predicted result should always be verified by running 
confirmation experiments.

Computation of Average Performance

To compute the average performance of factor A at level 1, that 
is, for A1, add results (from Table 5-3) for trials including factor 
A1 and then divide by the number of such trials.

For A1, we look in the column where factor A is assigned and 
find that level 1 occurs in trials 1 and 2. The average effect of 
A1 is therefore calculated by adding the results, Y, of these two 
trials as follows:

Table 5-5. An L4 array with test data of molding process experiment

FACTOR
TRIAL

A B C
RESULT (Y)

1 1 1 1 30

2 1 2 2 25

3 2 1 2 34

4 2 2 1 27
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A Y Y1 1 2 2 30 25 2 27 5.

The average effects of other factors are computed similarly.

A Y Y

B Y Y

B Y Y

2 3 4

1 1 3

2 2 4

2 34 27 2 30 5

2 30 34 2 32 0

.

.

2 25 27 2 26 0

2 30 27 2 28 5

2 25

1 1 4

2 2 3

.

.C Y Y

C Y Y 334 2 29 5.

The average effects can also be plotted for a visual inspection, 
as shown in Figure 5-1. Frequently, the term “factorial effect,” or 
“main effect” or “column effect,” is loosely substituted for “aver-
age effect.” Strictly speaking, the factorial effect is the difference 
between the two average effects of the factor at the two levels. For 
instance, the factorial effect of factor C is the difference between 
the average effect of C1 and C2.

Quality Characteristics

In a previous chapter, the quality characteristics were de-
scribed as:

• bigger is better
• smaller is better
• nominal is best

For the molding process example, higher strength of the mold-
ed plastic part is desired and thus “bigger is better.” From Figure 
5-1, the A2 B1 C2 will likely produce the best result and therefore 
represents the optimum condition except for the possible effect 
of interactions between the factors.

In terms of the actual design factors, the probable optimum 
condition becomes:

A2 that is, injection pressure at 350 psi
B1 that is, mold temperature at 150°F
C2 that is, set time at 9 sec.
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Relative Influence of Factors

The relative influences of factors to the variation of results are 
determined by comparing their variances. The technique popu-
larly known as the analysis of variance (ANOVA) is used for this 
purpose. ANOVA will be covered in detail in Chapter 6. Here the 
procedure is briefly introduced to complete the analysis.

ANOVA Terms and Notations

The analysis of variance computes quantities known as de-
grees of freedom, sums of squares, mean square, and so on, and 
organizes them in a standard tabular format. These quantities 
and their interrelationships are defined as shown below using 
the following notation:

 V = mean square (variance) P = percent influence
 S = sum of squares T = total (of results)
 S = pure sum of squares N = number of experiments
 f = degrees of freedom C.F. = correction factor
 e = error (experimental) n = total degrees of freedom

F = variance ratio

Figure 5-1. Main effects
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Variance

The variance of each factor is determined by the sum of the 
square of each trial sum result involving the factor, divided by the 
degrees of freedom of the factor. Thus:

V S f A

V S f B

V S f

A A A

B B B

C C C

(for factor )

(for factor )

(for factoor )

(for error terms)

C

V S fe e e

Variance Ratio

The F-ratio is the variance of the factor divided by the error 
variance.

F V V

F V V

F V V

F V V

A A e

B B e

C C e

e e e 1

Pure Sum of Squares

The pure sum of squares is the sum minus the degrees of 
freedom times the error variance.

S S f V

S S f V

S S f V

S S f f f V

A A A e

B B B e

C C C e

e e A B C e

Percent Influence

The percent influence of each factor is the ratio of the factor 
sum to the total, expressed in percent.

P S S

P S S

P S S

P S S

A A T

B B T

C C T

e e T

100

100

100

100
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Examples of Variation Computation

Total variation: ST = Sum of squares of all trial run results – C.F.

where:  and 

or 

C F T N T Y Y Y Y

S Y Y Y YT

. . 2

1 2 3 4

1

2

4

2

1 2 Y Y3 4

2

2 2 2 2 2

4

30 25 34 27 30 25 34 27 4

3410 3364

46

For the molding process experiment, the totals of the factors are:

A1 = 30 + 25 = 55 A2 = 34 + 27 = 61

B1 = 30 + 34 = 64 B2 = 25 + 27 = 52

C1 = 30 + 27 = 57 C2 = 25 + 34 = 59

therefore, the total variance of each factor is:
S A N A N C FA A A1

2

1 2

2

2

2 255 2 61 2 3364

1512 5 1860 5 3364 9

. .

. . .00

36 01

2

1 2

2

2S B N B N C FB B B . . .

and

S C N C N C FC C C1

2

1 2

2

2 1 0. .

The error variance

S S S S Se T A B C

46 9 36 1 0 (in this case)

Degrees of Freedom (DOF)

The number of the degrees of freedom for a factor or a column 
equals one less than the number of levels. Thus, for a two-level 
factor assigned to a two-level column, the DOF is 1. An L4 OA with 
three two-level columns will have a total of 3 DOF, or one for each 
column. The total degrees of freedom of the result T, however, is 
computed as follows:
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fT = total number of results – 1
= (total number of trials × number of repetition) – 1
= 4 × 1 – 1 = 3

For factors

fA = number of levels of A – 1 = 1

fB = number of levels of B – 1 = 1

fC = number of levels of C – 1 = 1

and the DOF for error variance is

fe = fT – fA – fB – fC

= 3 – 1 – 1 – 1

= 0

Variance

V S f

V S f

V S f

V S f

A A A

B B B

C C C

e e e

9 1 9

36 1 36

1 1 1

0 0  indeterminnate

Note that if the experiment included repetitions, say 2, then:

fT = 4 × 2 – 1 = 7

fe = 7 – 1 – 1 – 1 = 4

where Se need not equal zero, depending on test results, and Ve
need not be zero.

Variance Ratio

F V VA A e  is indeterminate because Ve = 0. Similarly, FB and 
FC are indeterminate (Table 5-6). However, Ve can be combined 
(pooled) with another small variance, VC, to calculate a new error 
Ve that can then be used to produce meaningful results. The pro-
cess of disregarding an individual factor’s contribution and then 
subsequently adjusting the contributions of the other factors is 
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known as pooling. Generally, only factors that are believed to be 
insignificant are pooled. Whether a factor is significant or not is 
found by the test of significance. The detailed procedure for the 
test of significance (for pooling) and the criteria used to determine 
its use will be discussed in Chapter 6 along with ANOVA.

Consider the pooled effects of factor C. Then the new error 
variance is computed as:

V S S f fe C e C e

1 0 0 1 0 0 1. .

With this new Ve, all sums of squares, S, can be modified as

S S V fA A e A

and so on.
The result then can be shown in the ANOVA table with the 

effect of factor C pooled. The pooled effects are shown as the error 
term in the ANOVA table (last row of Table 5-7).

The last column of the ANOVA table shows the percent contri-
bution of the individual factor. In the example, factor B contributes 
the most, 76.08%. The contribution of A is 17.39% and that of C
is not significant.

Note that the difference in the percentage influences of fac-
tors before (Table 5-6) and after pooling (Table 5-7) is not large. 
To increase the statistical significance of important factors, those 
factors with small variances should be pooled.

Projection of Optimum Performance

Recall that for a “bigger is better” quality characteristic, the 
study of the main effect shows that the optimum condition is 
A2 B1 C2. It happens to be the third trial run. This is just a coin-
cidence. Most of the time, the optimum condition will not be one 
of the trial runs because a Taguchi experiment represents only a 
small set of the full factorial experiment. The probability is 50% 
that the optimum condition is one of tests carried out. This is be-
cause in an L4 experiment four out of eight full factorial conditions 
are tested. Of course, regardless of the size of the experiment, the 
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optimum is always one of the trials defined by the full factorial 
experiment. As a general rule, the optimum performance will be 
estimated using the following expression.

T = grand total of all results
N = total number of results
Yopt = estimated performance at optimum condition

For optimum combination A2 B1 C2 (which happens to be ex-
periment 3)

Y T N A T N B T N C T Nopt 2 1 2

= average performance + contribution of A2, B1, and C2
above average performance

In this example:

T N A B C116 4 30 5 32 29 52 1 2, , . , , .

Table 5-6. ANOVA table for molding process experiment
NOTATION

FACTOR

f S V F s P (%)

A 1 9 9 — — 19.62

B 1 36 36 78.28

C 1 1 1 2.10

Error 0 0 0

Total 3 46 100.00%

Table 5-7. Pooled ANOVA table for molding process experiment
NOTATION

SOURCE

f S V F s P (%)

A 1 9 9 9 8 17.39

B 1 36 36 36 35 76.08

C -------- pooled -------- -------- -------- --------

Error 1 1 1 6.74

Total 3 46 100.00%
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therefore,

Yopt 29 30 5 29 32 29 29 5 29

34 0

. .

.

which is the result obtained in trial 3.
When the optimum is not one of the trial runs already com-

pleted, this projection should be verified by running a confirmation 
test(s). Confirmation testing is a necessary and important step 
in the Taguchi method as it validates assumptions used in the 
analysis. Generally speaking, the average result from the confir-
mation tests should agree with the optimum performance, Yopt,
estimated by the analysis. The correlation can also be established 
in statistical terms, reflecting the level of confidence, influence 
of number of confirmation tests, and so on. The procedure for 
calculating the confidence interval of the optimum performance 
is discussed in Chapter 6.

DESIGNING WITH MORE THAN THREE VARIABLES

In the preceding section, layout of a simple experiment involv-
ing only three factors was discussed. In this section, designs with 
a larger number of factors will be considered. The designs will use 
the higher-order orthogonal arrays (OAs).

Designs with Two-Level Variables
Example 5-2

Design an experiment to investigate

Four factors all at two levels,
Five factors all at two levels,
Six factors all at two levels, 

or Seven factors all at two levels.

Let these factors be A, B, C, D, E, F, and G and their levels 
be A1, A2, and so on.

Experiment Design
As seen in the last example, the smallest OA, L4, can handle 

up to three factors. What if there are more than three factors?
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A list of commonly used OAs is shown in Table A-1. Notice that 
L8 can be used for four to seven factors. Therefore, L8 is suitable 
for any of the above situations.

An L8 array has eight trial conditions and seven columns. To 
design the experiment, factors must be assigned to appropriate 
columns, and eight trial conditions must be described.

Because all factors have the same number of levels, the factor 
can be assigned to any one column. Thus, factor A can be assigned 
to any of the columns 1 through 7. Then B can be assigned to any 
one of the remaining columns. You can also assign them in natu-
rally ascending order, like A in column 1, B in column 2, and so on. 
If there are only four factors, ignore the three unused columns.

The experimental conditions are defined by reading across 
the row of the OA. An L8 OA, as shown in Table A-2, has eight 
rows. Thus, it represents eight unique combinations of factors 
and their levels. An L8 with the factors assigned to its columns is 
shown in Table 5-8.

From an L8 array, trial 3 is defined as:

Trial 3 A1 B2 C2 D1 E1 F2 G2
(the numbers in the OA represent the levels of the factor
assigned to the column)

Table 5-8. L8 with seven two-level factors—Example 5-2

FACTOR

COLUMN

EXPERIMENT

A

1

B

2

C

3

D

4

E

5

F

6

G

7

RESULT

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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Example 5-3
Number of factors = 8 through 11
Number of levels for each = 2
Use array L12

Experiment Design
Use L12 in Table A-3 for this example. Assign factors 1 through 

11 in the 11 columns available, in any order. Express the 12 ex-
perimental conditions by using the 12 rows of the OA. Note that 
L12 is a special array prepared for study of the main effects only 
(not suitable for study of interaction between factors). In this 
array, the interaction effects of factors assigned to any two col-
umns are mixed with all other columns, which renders the array 
unsuitable for interaction studies. (Use L16, L32, and L64 shown in 
Appendix A to design experiments with higher numbers of two-
level factors.)

Designs with Three-Level Variables

Example 5-4
Number of factors = 5 through 13
Number of levels for each = 3
Use array L27 (Table A-8)

Designs with Mixed Levels Using Standard Arrays

Example 5-5
Consider the experiments where there are eight factors to be 

investigated. To study the nonlinear effect, seven factors were set 
at three levels. The remaining one factor was examined at only 
two levels.

Experiment Design
This is an example of mixed levels. The L18 array shown in Table 

A-7(b) is one of the few standard mixed-level arrays and is used in 
this case. L18 has eight columns, with column 1 having two levels 
and the rest having three levels. Obviously, the factor with two 
levels will be assigned to column 1. The remaining seven factors 
can be assigned to columns 2 through 8 in any desired manner.
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DESIGNS WITH INTERACTION

The term interaction, expressed by inserting an “×” mark be-
tween the two interacting factors, is used to describe a condition 
in which the influence of one factor on the result is dependent 
on the condition of the other. Two factors, A and B, are said to 
interact (written as A × B) when the effect of changes in the level 
of A determine the influence of B, and vice versa.

For example, temperature and humidity appear to have strong 
interaction with respect to human comfort. An increase in tem-
perature alone may cause slight discomfort, but the discomfort 
increases as humidity increases. Assume the comfort level is de-
pendent only on two factors, T and H, and is measured in terms 
of numbers ranging from 0 to 100. If T and H are each allowed 
to assume levels as T1, T2, H1, and H2, assume that two sets of 
experimental data (with the same grand total of all observations) 
are obtained and represented by Tables 5-9(a) and (b). The data 
are plotted in Figures 5-2(a) and (b). Figure 5-2(a) shows an in-
teraction between the two factors because the lines cross. Figure 
5-2(b) shows no interaction because the lines are parallel. If the 
lines are not parallel, the factors may interact, albeit weakly.

The graphical method reveals if interaction exists. The input 
for this interaction plot comes from the experimental results, and 
the degree of presence of interaction is calculated as the magnitude 
of the angle between the lines. But how can we know whether the 
factors will interact before we design the experiment? The Taguchi 
methods do not specify any general guidelines for predicting inter-
actions. One has to determine interaction by some other means, 
perhaps from experience or previous experimental studies.

Experimental design using Taguchi OAs is simple and straight-
forward when there is no need to include interactions. It requires a 
little more care to design an experiment where interactions are of 
interest and are included in the study. In Taguchi OAs, the effect 
of interactions are mixed with the main effect of a factor assigned 
to some other column. In the L4 shown in Table 5-10 with factors 
A and B assigned to columns 1 and 2, interaction effects of A × 
B will be contained in column 3. If the interactions of A × B are 
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Figure 5-2. Main effects of factors T and H

Table 5-9. Layout for experiment with two two-level factors
(a) Case with interaction (b) Case without interaction

T1 T2 TOTAL T1 T2 TOTAL

H1 62 80 142 H1 67 75 142

H2 75 73 148 H2 70 78 148

Total 137 153 290 Total 137 153 290

Table 5-10. L4 with two two-level factors

COLUMN

FACTOR

EXPERIMENT

1

A

2

B

3

A × B

C

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

of no interest, a third factor C can be assigned to column 3 (see 
Table 5-10). The effect of interaction A × B will then be mixed 
with the main effect of factor C.
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The interacting pair of columns along with the column where 
the interaction is shown constitute an interacting group of col-
umns (IGCs). An IGC consists of columns that are commutative. 
Columns 1, 2, and 3 form one of the IGCs. In case of an L8 OA, 
the interaction of columns 1 and 2 goes to column 3. This also 
means that the interaction between 2 and 3 is reflected in column 
1 and that between 3 and 1 shows up in 2. What about interactions 
between other columns of an L8 or any other two-level orthogonal 
arrays? What about interaction between two columns of three-
level orthogonal arrays? These are difficult tasks for practicing 
engineers to keep track of. Dr. Taguchi spent much of his research 
determining relationships for interacting columns. His findings 
regarding which columns interact with which others are presented 
in a table called the Triangular Table of Interaction. There are 
tables to suit different levels of OAs. A large triangular table as 
shown in Table A-6, made for two-level columns, will usually sat-
isfy most commonly used two-level orthogonal arrays.

Note that the first seven columns of Table A-6 become the 
triangular table for L8, as shown in Table 5-11.

A triangular table contains information about the interaction 
of the various columns of an OA. The table should be interpreted 
in the following way. The number in parentheses at the bottom 
of each column identifies the column. To find in which column 
the interaction between columns 4 and 6 will appear, move hori-
zontally across 4 and vertically from 6; the intersection is 2 in 
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the tables. Thus, the interaction effects between columns 4 and 
6 will appear (mixed or confounded with factors) at column 2. In 
a similar manner, other interacting columns can be identified.

The triangular table facilitates laying out experiments with 
interactions. The table greatly reduces the time and increases 
the accuracy of assigning proper columns for interaction effects. 
To further enhance efficiency of the experimental layout, Tagu-
chi created line diagrams based on the triangular tables. These 
diagrams represent standard experiment designs. He calls such 
diagrams linear graphs. Linear graphs for L4, L8, and other two-
level orthogonal arrays are shown in Figures A-2 and A-3.

Linear Graphs

Linear graphs are made up 
of numbers, dots, and lines, as 
shown in Figure 5-3 for an 
L4 array, where a dot and its 
assigned number identifies 
a factor, a connecting line 
between two dots indicates 
interaction, and the number assigned to the line indicates the col-
umn number in which interaction effects will be compounded.

In designing experiments with interactions, the triangu-
lar tables are essential; the linear graphs are complementary 
to the tables. For most industrial experiments, interactions 
between factors are minor and the triangular tables suffice. 
The following example shows how these two tools are used for 
experimental design.

Example 5-6
In a baking experiment designed to determine the best recipe 

for a pound cake, five factors and their respective levels were 
identified, as presented in Table 5-12.

Among these factors, milk (factor C) was suspected to interact 
with eggs (A) and butter (B). An experiment was designed to study 
the interactions A × C and B × C in addition to the main effects 
of factors A, B, C, D, and E.

Figure 5-3. Linear graph for L4 array

1 2

3
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Steps in the Design and Analysis

Degrees of Freedom (DOF)

Each of the five factors (A, B, C, D, E) is to be studied at two 
levels; therefore, each factor has a DOF of 1 (DOF = number of levels 
– 1). The DOF for the interaction is computed by multiplying the 
DOF of each of the interacting factors. Thus, the DOF for A × C is 1. 
Likewise, the DOF of B × C = 1. The total DOF for the five factors 
and two interactions in this case is 7. The appropriate Taguchi array 
cannot have a DOF less than the total DOF of the experiment.

Selecting the Right Orthogonal Array

The experiment under consideration has 7 DOF and therefore 
requires an OA with 7 DOF, hence an OA with at least seven col-
umns. Because an L4 has three columns, its DOF is 3. An L8 has 
seven columns and 7 DOF; it possibly can work. An L12 has 11 
two-level columns, of which only seven are needed. L12 certainly 
will work but will require 12 trial runs in contrast to eight for L8.
The smallest OA that will do the job should be selected to minimize 
experiment cost and time. How about an L16? That is too large for 
a 7 DOF experiment. In this case, an L8 is a good match. Would an 
L8 always work for an experiment with 7 DOF? Not necessarily. 
It will depend mainly on how many interactions are expected to 
be investigated. It will work for Example 5-6.

Column Assignment

In designing experiments with interactions, the columns to 
reserve to study interactions must be identified first. We have 

Table 5-12. Factors for cake baking experiment—Example 5-6
FACTOR LEVEL 1 LEVEL 2

A—Eggs 2 eggs (A1) 3 eggs (A2)

B—Butter 1 stick (B1) 1.5 sticks (B2)

C—Milk 2 cups (C1) 3 cups (C2)

D—Flour 1 extra scoop (D1) 2 extra scoops (D2)

E—Sugar 1 extra scoop (E1) 2 extra scoops (E2)



Working Mechanics of the Taguchi Design of Experiments 73

two interactions, A × C and B × C. The trick is to select posi-
tions for A × C and B × C such that there are free columns 
for each of the factors A, B, and C as well. This can be done by 
using the triangular table for a two-level OA or the correspond-
ing linear graphs. Let us examine the linear graph (a) of Figure 
A-2. C is common to A × C and B × C. Assign C to column 2, a 
vertex with two connecting lines. Notice column 2 is a vertex of 
the triangle with sides 2-3-1 and 2-6-4. With C at 2, assign A to 
either column 1 or column 4 and B to any remaining column. If 
A is assigned to 1 and B to 4, then A × C becomes column 3 and 
B × C becomes column 6.

Five columns have been used by factors A, B, and C and in-
teractions A × C and B × C. The remaining two factors, D and 
E, can be assigned to columns 5 and 7 in any order. Let us assign 
D to column 5 and E to column 7. With factors and interactions 
successfully assigned to the available columns, an L8 is obviously 
suitable for the design.

Having a total DOF less than or equal to that for the OA is not 
always a guarantee that a design can be accomplished. Suppose 
instead of interactions A × C and B × C that interactions A × C
and B × D were to be investigated. The total DOF will still be 7, 
the same as L8. By examining Figure A-2, notice that both linear 
graphs (a) and (b) have a common factor, such as 1, 2, or 4. Because  
interactions A × C and B × D do not have a common factor, an L8
cannot be used. The next higher-order array should be tried (L16
will be needed, as L12 is not suitable for interaction).

The experiment designed for Example 5-6 uses the L8 OA with 
column assignments as shown in Table 5-13.

Description of Combinations

The eight trial conditions contained in Table 5-13 can be de-
scribed individually. Tables 5-14 and 5-15 show trial runs 1 and 2, 
respectively. The other trial runs can be similarly described. Note 
that the numbers in the columns where interactions are assigned 
(columns 3 and 6 in Table 5-13) are not used in the description 
of trial run 2 (Table 5-15). Normally the interaction column does 
not need to appear in the description and thus is deleted from the 
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description of the trial runs (see trial 2, Table 5-15). Complete 
design information and analysis for this experiment are shown 
in Table 5-16.

Running the Experiment

The order in which a specific combination of experiments is run 
is unaffected by the consideration of the interactions. Conditions 
1 through 8 should be done in a random order. A minimum of one 
trial run per condition must be performed. Repetition of trial runs 
and the order of repetitions are constrained by time and cost.

Quality Characteristic (Results)

Eight cakes were baked, one for each of the trial runs of Table 
5-13. The cakes were then examined by several experienced bakers. 
Before the cakes were baked, evaluation criteria were established. 
It was agreed that the cakes were to be evaluated not only for 
taste but also for appearance and moistness. It was decided that 
the cakes were to be rated on a scale of 0 to 100, using a scheme to 
reflect the weighting of each individual attribute of the characteris-
tic. For each condition, the average of the evaluations by the bakers 
was recorded, as shown in the column marked Results (see Table 
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5-13). Based on the definition, a higher value of the results was 
considered favorable. For the purpose of analysis, this constituted 
the “higher (bigger) is better” type of quality characteristic.

Analysis of Results

The analysis of data including interactions follows the same 
steps as are taken when there is no interaction. The objectives are 
the same: (1) determine the optimum condition, (2) identify the in-
dividual influence of each factor, and (3) estimate the performance 
at the optimum condition. The methods for objectives 2 and 3 are 
the same as before. For the optimum condition, interactions intro-
duce a minor change in the manner in which the optimum levels 
of factors are identified. To develop a clear understanding of how 
the optimum condition is selected, the main effects are discussed 
here in detail. (The details of ANOVA will be covered in Chapter 
6, but only the results of a computer analysis will be presented.)

Table 5-14. Description of trial 1 (cake baking)—Example 5-6
COLUMN FACTOR (VARIABLE) LEVEL

1 A—Eggs 2 eggs (A1)

2 C—Milk 2 cups (C1)

3 A × C (Eggs × Milk)

4 B—Butter 1 stick (B1)

5 D—Flour 1 extra scoop (D1)

6 B × C (Butter × Milk)

7 E—Sugar 1 extra scoop (E1)

Table 5-15. Description of trial 2 (cake baking)—Example 5-6
COLUMN FACTOR (VARIABLE) LEVEL

1 A—Eggs 2 eggs (A1)

2 C—Milk 2 cups (C1)

4 B—Butter 1.5 sticks (B2)

5 D—Flour 2 extra scoops (D2)

7 E—Sugar 2 extra scoops (E2)
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Table 5-16. Analysis of cake baking experiment—Example 5-6

(a) Main effects

COLUMN FACTOR DESCRIPTION
LEVEL 1 

AVERAGE
LEVEL 2 

AVERAGE
DIFFERENCE

(2 – 1)

1 A Eggs 64.25 66.00 1.75

2 C Milk 68.75 61.50 –7.25

3 A × C 1 × 2 67.75 62.50 –5.25

4 B Butter 56.00 74.25 18.25

5 D Flour 70.00 60.25 –9.75

6 B × C 2 × 4 64.50 65.75 1.25

7 E Sugar 65.50 64.75 –0.75

(b) ANOVA table

COLUMN FACTOR DESCRIPTION DOF
SUM OF
SQUARES VARIANCE F PERCENT

1 A Eggs 1 6.125 6.125 5.44 0.49

2 C Milk 1 105.125 105.125 93.44 10.13

3 A × C Interaction 1 × 2 1 55.125 55.125 49.00 5.26

4 B Butter 1 666.125 666.125 592.11 64.76

5 D Flour 1 190.125 190.125 169.00 18.41

6 B × C Interaction 2 × 4 1 3.125 3.125 2.77 0.19

7 E Sugar (1) (1.13) Pooled

All others/error 0 1.13 1.13 0.78

Total: 7 1026.880 100.00

(c) Estimate of performance at optimum condition of design/process
Characteristic: Higher (bigger) is better

FACTOR DESCRIPTION LEVEL DESCRIPTION LEVEL NUMBER CONTRIBUTION

Eggs 3 eggs 2 0.875

Milk 2 cups 1 3.625

Butter 1.5 sticks 2 9.125

Flour 1 extra scoop 1 4.875

Sugar 1 extra scoop 1 0.375

Contribution from all factors (total) ............................................................ 18.875

Current grand average of performance ..................................................... 65.125

Expected result at optimum condition ......................................................... 84.000
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The average effect of level 1 of the factor in column 1 (the ef-
fect of two eggs) is computed by adding the first four trial results 
of Table 5-13 and dividing the sum by 4. Note that for trials 1 to 
4, factor A (eggs) is assigned level 1 (2 cups). Thus each of these 
trial runs contains the effect of factor A at level 1 (A1). The aver-
age effect of A1, therefore, is found by averaging the results of 
the first four experiments. The notation A1 with a bar is used for 
this value. Thus,

A1 66 75 54 62 4 64 25.

Similarly, the average effect of level 2 of A is obtained by the 
last four trial runs because these were runs with factor A at level 
2. Hence:

A2 52 82 52 78 4 66 00.

Similarly,

C

C

1

2

68 75

61 50

.

.

and,

A C

A C

1

2

67 75

62 50

.

.

The calculations for each factor and level are in Table 5-16(a).
The difference between the average value of each factor at levels 

2 and 1 indicates the relative influence of the effect. The larger 
the difference (magnitude), the stronger the influence. The sign of 
the difference obviously indicates whether the change from level 1 
to 2 increases or decreases the result. The main effects are shown 
visually in Figure 5-4. Figure 5-5 shows the interaction effects of 
A × C and B × C.

Ignoring interaction effects for the moment, notice that Table 
5-16(a) and Figure 5-4 show an improvement at level 2 only for 
factors A and B, while level 2 effects for C, D, and E cause a de-
crease in quality. Hence, the optimum levels for the factors based 
on the data are A2, B2, C1, D1, and E1. Coincidentally, trial 6 tested 
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these conditions and produced the highest result (Table 5-13). 
Because interaction is ignored, the average effects of (A × B)1,2
and (A × C)1,2, shown in Table 5-16(a), are not used in determin-
ing the optimum.

Interaction Effects

To determine whether the interaction is present, a proper 
interpretation of the results is necessary. The general approach 
is to separate the influence of an interacting member from the 
influences of the others. In this example, A × C and B × C are 
the interactions with C common to both. The information about C
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can be extracted from the columns assigned to factors A, B, and C
at the two levels of C. This requires some additional calculations. 
The steps involved are described below.

The A1C1 is first found from the results that contain both A1 and 
C1. Note that A1C1 is not the same as the average value in level 1 of 
Table 5-16(a) for interaction A × C assigned to column 3 of Table 
5-13. This value is (A × C)1. In this analysis, interaction columns, 
that is, columns 3 and 6, are not used. Instead, the columns of 
Table 5-13 that represent the individual factors are used. Exami-
nation of column 1 shows that A1 is contained in rows (trial runs) 
1, 2, 3, and 4, but C1 is in trial runs 1, 2, 5, and 6. Comparing the 
two, the rows that contain both A1 and C1 are 1 and 2. Therefore, 
A1C1 comes from the results of trial runs 1 and 2.

The average effect of A C1 1 66 75 2 70 50. . The two 
common trial runs for A1C2 are 3 and 4, and the average effect of 
A C1 2 54 62 2 58 00. .

In the calculations for A C1 1
 and A C1 2

, factor level A1 is com-
mon. The difference between result 70.50 for A1C1 and result 58.00 
for A1C2 is due only to factor C.

Similarly, A C2 1
, A C2 2

, B C1 1
, B C1 2

, B C2 1
, and B C2 2

 are calcu-
lated. All of the results are shown below and plotted in Figure 5-6.

A C A C

A C A C

B C B C

1 1 2 1

1 2 2 2

1 1 2 1

70 50 68 50

58 00 65 00

59 00 78

. .

. .

. .550

53 00 70 001 2 2 2B C B C. .

The intersecting lines on the left represent the presence of in-
teraction between A and C. Of course, for interaction to exist, the 
lines need to have an angle between them, whether intersecting 
or not. The parallel lines (representing a lesser angle between) on 
the right show that B and C probably do not interact. Recall that 
in Table 5-16(a) the average influence of interaction (A × C)1,2
assigned to column 3 was –5.25.

Further analysis for the significance of this influence is made 
possible by the ANOVA table in Table 5-16(b), which shows that 
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the interaction A × C (column 3) is 5.26%, compared to the in-
dividual main effects of butter (B) 64.76% and flour (D) 18.4%, 
and so on.

To summarize, the suspected interaction between factors B
and C was not observed within the factor ranges studied. The 
suspected interaction between A and C does exist; its value is 
5.26%, based on ANOVA.

To reexamine the optimum condition determined only from 
the factors A2, C1, B2, D1, and E1, we see from Figure 5-6 that 
A C1 1

 has a higher value than A C2 1
. Thus, based on the interac-

tion analysis, the optimum condition must include levels A1 and 
C1. The new optimum conditions become A1 B2 C1 D1 E1. However, 
the performance at the new optimum should be compared with 
the original optimum before the final determination of the inter-
action effects.
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Consider the initial optimum that excluded the effects of in-
teraction (condition A2 C1 B2 D1 E1). Using T = average result of 
eight runs (Table 5-13) = 521/8 = 65.125. Compute the optimum 
performance using data from Table 5-16(a):

Y T A T C T B T

D T E T

T T

opt 2 1 2

1 1

66 0 68 75. . T T

T T

74 25

70 00 65 50

65 125 0 875 3 625 9 1

.

. .

. . . . 225 4 875 0 375

65 125 18 875

84 000

. .

. .

.

Similarly, for the revised optimum, considering interaction 
A1 C1 B2 D1 E1, we compute:

(with interaction A × C only)

Y T A T C T A C T

B T D T E T

T

opt 1 1
1

2 1 1

644 25 68 75 67 75

65 125 875 3 625 2 625

. . .

. . . .

T T T

9 125 4 875 375

84 875

. . .

.

                

Yopt can also be calculated by an alternate method as:

Y T A C T B T D T E T

T T T

opt 1 1 2 1 1

70 5 74 25. . 770 65 5

65 125 5 375 9 125 4 875 0 375

84 875

T T.

. . . . .

.
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Note that when the estimate of performance at the optimum 
condition includes the interactions between A and C, the net re-
sult is obtained from the combined effect of A C1 1

 in the alternate 
method and not from using the average value of A × C from the 
effect in the third column.

The second calculation yields a value different from the opti-
mum prediction without interaction and should be used to compare 
the results of the confirmation tests.

As a final check, examine the interaction between B and C.
The second pair of lines in Figure 5-6 represents the effect of C
at fixed levels of B. The lines are almost parallel, thus indicating 
little interaction. The ANOVA calculations presented in Table 5-
16(b) show a small interaction (0.19%). Observe that the highest 
value for the pair of lines corresponds to C1B2. Comparing C1B2
to the revised optimum condition, we find that C1B2 is included. 
Thus, the interaction B × C has no influence on the optimum. 
The optimum condition remains as revised for interaction A × C,
and no further modification is needed.

Optimum condition = A1 C1 B2 D1 E1
Expected performance at optimum condition = 84.875

Key Observations
• In designing experiments with interactions, triangular 

tables or linear graphs should be used for column as-
signments. To select the appropriate OA, the types of 
interactions and their degrees of freedom will have to be 
considered. The following steps are recommended for the 
experiment design process:
1. Select the array based on factors and interactions and 

their levels. The degrees of freedom of the OA must 
equal or exceed the DOF of factors and interactions.

2. Assign factors to the column arbitrarily when no in-
teraction is included. In case interaction is part of the 
study, treat interacting factors first and reserve columns 
based on the triangular table to study interaction.

3. Describe trial conditions by reading across the OA with 
factors and interactions assigned to the columns.
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• For the purpose of analysis, interactions are treated as 
any other factors; however, their presence is ignored for 
the preliminary determination of the optimum condition. 
The relative significance of interactions is obtained from 
an ANOVA study.

• The determination of the effect of interactions requires a 
separate study. Such study may suggest a change in the 
optimum condition.

• When several interactions are included in an experiment, 
the level selection may become extremely complex.

How should interactions be handled? Should an extra variable 
be included to study the interaction? If constraints necessitate a 
choice between including an extra variable or studying an interac-
tion, Taguchi recommends “dig wide, not down.” When there is 
an extra column, study a new variable, not an interaction. On the 
second pass, if there are strong feelings about the interactions, 
then they should be included.

More Designs with Interactions

Example 5-7
Design an experiment with five factors at two levels each and 

two interactions.

Variables: A, B, C, D, E
Interactions: A × B and C × D

Experiment Design
The five factors and the two interactions each have one DOF. 

Thus the total DOF is 7. In this case, an L8 will not work because 
the triangular table (Tables 5-11 and A-6) shows that there is 
only one independent triplet in the first seven columns. In other 
words, if A and B are assigned to columns 1 and 2, column 3 will be 
reserved for A × B. This means that columns 4, 5, 6, and 7 remain 
for factors C, D, E, and interaction C × D. However, any combina-
tion of these columns 4, 5, 6, and 7 contains only the values 1, 2, 
or 3; hence, their interaction would involve columns previously 
assigned to A, B, and A × B. The next higher-order OA is an L12,
but it is a special array where interaction effects are distributed, 
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and thus it cannot be used to study interactions. An L16 OA is 
the next higher-order array. Examination of the triangular table 
(Table A-6) will show that it can be used.

Using Table A-6, arbitrarily assign:

A to column 1 C to column 2
B to column 4 D to column 8

Then A × B is column 5, C × D is column 10, and E is column 3.
There were many ways to achieve this column assignment. In this 

case, using Table A-6, A and B were arbitrarily assigned to columns 
1 and 4, with column 5 reserved for interaction A × B. C and D were 
then assigned to two unused columns such that C × D becomes a 
column that is 15 or less and not previously assigned. Columns 2, 8, 
and 10 were the interacting group of columns selected for factors C,
D, and C × D, respectively. The factor E was then assigned to one of 
the remaining nine columns, column 3. The final design is shown in 
Table 5-17. Note that columns 6, 7, 9, and 11 to 15 are unassigned 
but can be used in the analysis for a pooled error estimate.

Example 5-8
Design an experiment with nine factors at two levels each and 

five interactions, as described below:

Variables: A, B, C, D, E, F, G, H, I
Interactions: A × B, A × C, A × E, A × F, and B × D

Experiment Design
The nine factors and five interactions together have 14 DOF. 

An L16 OA has 15 DOF and is a good candidate. Because of the 
number of interactions, a linear graph of L16 is helpful. Because 
the factor A is common to four of the five interactions, a linear 
graph with a hub will be used. In Figure A-3, the lower left diagram 
can be adapted for the design by selecting columns of interest, as 
shown in Figure 5-7. Start by assigning A to column 1. Then select 
the ends of four spokes for B, C, E, and F, as shown in Table 5-18. 
If B is assigned to column 15, then D will be column 8 and B × D
will be column 7. Therefore, when all of the five interactions are 
assigned to the appropriate columns, the remaining factors can 
be assigned to the available columns at random.
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More examples of experiment designs are described in later 
chapters and specifically in Chapter 9.

DESIGNS WITH MIXED FACTOR LEVELS

Designs without interactions and with all factors at two lev-
els are of the simpler kind. They are the least cumbersome and 
most often can be designed by means of the standard OAs. But 
there are many occasions when more than two levels will have 
to be included. In the baking process experiment, a third level 

Table 5-17. L16 design with five factors and two interactions—              
Example 5-7

FACTOR/
INTERACTION

A C

× ×

A C E B B D D

COLUMN

EXPERIMENT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 0 0 1 0 1 0 0 0 0 0

2 1 1 1 1 1 0 0 2 0 2 0 0 0 0 0

3 1 1 1 2 2 0 0 1 0 1 0 0 0 0 0

4 1 1 1 2 2 0 0 2 0 2 0 0 0 0 0

5 1 2 2 1 1 0 0 1 0 2 0 0 0 0 0

6 1 2 2 1 1 0 0 2 0 1 0 0 0 0 0

7 1 2 2 2 2 0 0 1 0 2 0 0 0 0 0

8 1 2 2 2 2 0 0 2 0 1 0 0 0 0 0

9 2 1 2 1 2 0 0 1 0 1 0 0 0 0 0

1 0 2 1 2 1 2 0 0 2 0 2 0 0 0 0 0

1 1 2 1 2 2 1 0 0 1 0 1 0 0 0 0 0

1 2 2 1 2 2 1 0 0 2 0 2 0 0 0 0 0

1 3 2 2 1 1 2 0 0 1 0 2 0 0 0 0 0

1 4 2 2 1 1 2 0 0 2 0 1 0 0 0 0 0

1 5 2 2 1 2 1 0 0 1 0 2 0 0 0 0 0

1 6 2 2 1 2 1 0 0 2 0 1 0 0 0 0 0
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of butter (say, 1.25 sticks, a 
step between 1 and 1.5) could 
be specified. The experiment 
would consist of four factors 
at two levels and one at three 
levels. What experiment de-
sign is appropriate?

Why are more than two 
levels needed? For some fac-
tors, three levels may be 
important. Consider an ex-
periment design of a molding 
process that uses plastic pellet 
feed stocks from four different 

vendors; or four different specifications may include a study of 
materials at four vendor-supplied specifications. The factor (mate-
rial), in such cases, will have four levels. Another likely reason for 
more than two levels is that the influence of a factor on the result 
is suspected to vary nonlinearly. Considering only two levels will 
give a linear output. Nonlinear behavior can only be determined 
by a third level, as shown in Figure 5-8.

There are some standard OAs that treat mixed-level factors, 
but they may not be the most economical or may not even suit 
one’s needs. For most applications involving mixed levels, Ta-
guchi modifies the standard arrays to fit the circumstances. By 
following his prescription, a two-level column can be upgraded to 
a four or eight-level column; a four-level column can be upgraded 
to an eight-level column. On the other hand, a column can also 
be downgraded by lowering the number of levels, say, from four 
to three. The method of reducing the levels is done by what is 
known as dummy treatment.

Before considering column modifications, some additional words 
about DOF are appropriate. Recall that the DOF for a column is its 
number of levels less 1. Thus, a two-level column has 1 DOF, a three-
level column has 2 DOF, and a four-level column has 3 DOF.

Therefore, to create a four-level column, three two-level col-
umns are needed to provide the same DOF. To change one column 
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Figure 5-7. Linear graph—Example 5-8
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of an L8 to a four-level column, three columns are combined. 
Similarly, to change a column of an L16 into an eight-level column, 
seven of the 15 two-level columns are combined.

Preparation of a Four-Level Column

A four-level column is easily prepared from three two-level 
columns that are part of an interacting group of columns. To 
demonstrate, consider an L8. The procedure will also apply for 
all two-level OAs.

Table 5-18. L16 design with nine two-level factors and five interactions—
Example 5-8

FACTOR/
INTERACTION

A A B A A

× × × × ×

A E E F F G D D H C C I B B

COLUMN

EXPERIMENT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

3 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

4 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

5 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

6 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

7 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

8 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

9 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 0 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

1 3 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

1 4 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

1 5 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

1 6 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1
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A1 A1A2 A2A3

Figure 5-8. Main effects of a factor with two and three levels

Steps

1. From the linear graph 
for L8, select a set of 
three interacting col-
umns (Figure 5-9). 
Example: columns 1, 
2, and 3.

2. Select any two col-
umns. Suppose 1 and 
2 are selected.

3. Combine the two columns row by row, by following the rules 
of Table 5-19, to get a combined column such as shown in 
Table 5-17. Replace the original columns 1, 2, and 3 by the 
new column that has just been prepared.

Example 5-9
Design an experiment to accommodate one factor at four levels 

and four others at two levels each.

Variables: A, B, C, D
Interactions: None
Levels: A = 4; B, C, D = 2

Experiment Design

Factor A has four levels and 3 DOF. The other four two-level 
factors each have 1 DOF. The total DOF is 7. An L8 OA, shown in 
Table 5-20, that has 7 DOF, appears suitable.

Figure 5-9. Groups of interacting columns 
for level upgrading
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Building Columns
The first three columns of an L8 can be combined to produce a 

four-level column following the procedure previously described.

Step 1. Start with an original L8 and select a set of three 
interacting columns, say 1, 2, and 3.

Step 2. Ignore column 3 (Table 5-21).
Step 3. Combine column 1 and 2 into a new column. Follow 

the procedure as shown by Tables 5-22 and 5-23.
Step 4. Assign the four-level factor to this new column and the 

others to the remaining original two-level columns, 
as shown in Tables 5-24 and 5-25.

The experimental conditions and the subsequent analysis are 
handled in a manner similarly to the techniques described before.

Table 5-19. Rules for preparation of a four-level column
LEVEL OF

FIRST COLUMN
LEVEL OF

SECOND COLUMN COMBINE TO FORM
LEVEL OF

NEW COLUMN

1 1 1

1 2 2

2 1 3

2 2 4

Table 5-20. L8 array—Example 5-9

COLUMN

TRIAL

1 2 3 4 5 6 7

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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Table 5-21. L8 undergoing column upgrade—Example 5-9

COLUMN

EXPERIMENT

1 2 3 4 5 6 7

1 1 1 1 1 1 1

2 1 1 2 2 2 2

3 1 2 1 1 2 2

4 1 2 2 2 1 1

5 2 1 1 2 1 2

6 2 1 2 1 2 1

7 2 2 1 2 2 1

8 2 2 2 1 1 2

Table 5-22. Rules for four-level column preparation—Example 5-9
OLD COLUMN NEW COLUMN

1 1 1

1 2 2

2 1 3

2 2 4

Table 5-23. Preparing a four-level column of an L8 array—Example 5-9

COLUMN

EXPERIMENT

   1   2 3 4 5 6 7

1 1          1  >  1 1 1 1 1

2   1          1  >  1 2 2 2 2

3   1          2  >  2 1 1 2 2

4   1          2  >  2 2 2 1 1

5   2          1  >  3 1 2 1 2

6   2          1  >  3 2 1 2 1

7   2          2  >  4 1 2 2 1

8   2          2  >  4 2 1 1 2
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Preparation of an Eight-Level Column

An eight-level column can be prepared by combining a set of 
seven two-level columns of an L16 OA. The procedure is similar 
to the one used in creating a four-level column. First we need to 
identify the seven columns involved and then combine the columns 
using some established guidelines.

Step 1. Select the set of seven columns.
One such set of seven columns consists of columns 1, 2, 3, 4, 

5, 6, and 7. The seven columns are an interacting set among three 
factors, A, B, and C. If A, B, and C are assigned to columns 1, 2, and 

Table 5-25. Modified L8 with factors assigned (one four-level column)—
Example 5-9

FACTOR A B C D E

EXPERIMENT/COLUMN NEW COLUMN 4 5 6 7

1 1 1 1 1 1

2 1 2 2 2 2

3 2 1 1 2 2

4 2 2 2 1 1

5 3 1 2 1 2

6 3 2 1 2 1

7 4 1 2 2 1

8 4 2 1 1 2

Table 5-24. Modified L8 array with one four-level column—Example 5-9

EXPERIMENT/COLUMN NEW COLUMN 4 5 6 7

1 1 1 1 1 1

2 1 2 2 2 2

3 2 1 1 2 2

4 2 2 2 1 1

5 3 1 2 1 2

6 3 2 1 2 1

7 4 1 2 2 1

8 4 2 1 1 2
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4, respectively, the trian-
gular table or the linear 
graph corresponding to 
an L16 will show that the 
interaction columns are 
3 for A × B, 5 for A × C,
6 for B × C, and 7 for A
× B × C. Here A × B × 
C represents the inter-
action between factor A
(column 1) and interac-
tion B × C (column 6). The six columns may be represented as 
a closed triangle in the linear graph and can be selected on this 
basis. A fourth line connecting the apex and the base represents 
the interaction A × B × C, as shown in Figure 5-10.

Step 2. Select the three columns to be used to form an eight-
level column.

Select the three columns where the three factors A, B, and 
C are assigned. In general, select each apex of the triangle of 
the linear graph for the set to represent the columns. These are 
columns 1, 2, and 4 for the set. The remaining four columns are 
eliminated because the three columns include the four interac-
tions A × B, A × C, B × C, and A × B × C.

Step 3. Combine three two-level columns into an eight-level 
column.

Compare numbers in each row of the three columns and com-
bine them using the rules shown in Table 5-26. Note that the rule 
is not the previous one for the four-level array, although it follows 
the same pattern.

For the set of columns under consideration, the first, second, 
and third are columns 1, 2, and 3, respectively (Fig. 5-10). The 
modified L16 array with its upgraded column is shown in Table 
5-27. Note that the linear graph (Fig. 5-10) represents seven 
columns consisting of three main effects and four interactions. 
Thus, combining the column representing the three main effects 
includes the four interactions.

1

5

4
6

73

2

Figure 5-10. Preparation of an eight-level 
column



Working Mechanics of the Taguchi Design of Experiments 93

DUMMY TREATMENT (COLUMN DEGRADING)

Just as two-level columns of OA can be combined to higher 
levels, so a higher level column can be decomposed into lower level 
columns. The method used is known as dummy treatment.

Consider an experiment involving four factors, A, B, C, and 
D, of which A has only two levels, and all of the others have three 
levels each. The DOF is 7. An L9 array has four three-level columns 
with 8 DOF. It could be used if one column can be reduced to the 
two-level for factor A and the three remaining columns are occu-
pied by factors B, C, and D. In dummy treatment, the third level 
of A = A3 is formally treated as A3, as if A3 exists. But in reality 
A3 is set to be either A1 or A2.

The design with the modified column (3) of L9 is shown in 
Table 5-28. Factor A can be assigned to any column. Note that 
column 3 was selected such that the modified level 3 = 1  occurs 
once in each group of three trial runs. This distribution enhances 
the experiment.

Example 5-10
In a casting process used to manufacture engine blocks for a 

passenger car, nine factors and their levels were identified (Table 
5-29). The optimum process parameters for the casting operation 

Table 5-26. Rules for preparation of an eight-level column for an L16 array

COLUMN

NEW COLUMNFIRST SECOND THIRD

1 1 1 1

1 1 2 2

1 2 1 3

1 2 2 4

2 1 1 5

2 1 2 6

2 2 1 7

2 2 2 8
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are to be determined by experiment. Of the nine factors, two are 
of three levels each and another of four levels. The remaining 
six factors are all of two levels each. The DOF is at least 13 if no 
interactions are considered.

Experiment Design
Because most factors are two-level, a two-level OA may be suit-

able. Each three-level factor can be accommodated by three columns 
(modified), and the four-level factor can also be described by three 
columns, for a subtotal of nine columns. The remaining six two-level 
factors require one column each. Thus, a minimum of 15 columns is 

Table 5-27. Converting L16 to include an eight-level column

           COLUMNS COMBINED TO FORM NEW COLUMNS

NEW COLUMN

COLUMN

EXPERIMENT

1 2 4 8 9 10 11 12 13 14 15

1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 2 2 2 2 2 2 2 2

3 1 1 2 2 1 1 1 1 2 2 2 2

4 1 1 2 2 2 2 2 2 1 1 1 1

5 1 2 3 1 1 1 2 2 1 1 2 2

6 1 2 3 1 2 2 1 1 2 2 1 1

7 1 2 4 2 1 1 2 2 2 2 1 1

8 1 2 4 2 2 2 1 1 1 1 2 2

9 2 1 5 1 1 2 1 2 1 2 1 2

1 0 2 1 5 1 2 1 2 1 2 1 2 1

1 1 2 1 6 2 1 2 1 2 2 1 2 1

1 2 2 1 6 2 2 1 2 1 1 2 1 2

1 3 2 2 7 1 1 2 2 1 1 2 2 1

1 4 2 2 7 1 2 1 1 2 2 1 1 2

1 5 2 2 8 2 1 2 2 1 2 1 1 2

1 6 2 2 8 2 2 1 1 2 1 2 2 1
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needed. L16 satisfies this requirement. Nine columns are to be con-
verted to three four-level columns, then two columns will be reduced 
by dummy treatment to three-level columns for this experiment.

Normally a three-level column will have 2 DOF. But when it 
is prepared by reducing a four-level column, it must be counted 

Table 5-28. Design with degraded column of L9

FACTOR

COLUMN

EXPERIMENT

B

1

C

2

A

3

D

4

1 1 1 1 1

2 1 2 2 2

3 1 3 1 3

4 2 1 2 3

5 2 2 1 1

6 2 3 1 2

7 3 1 1 2

8 3 2 1 3

9 3 3 2 1

( ) indicates new modified level
1  = (level 3)

Table 5-29. Factors of casting process experiment—Example 5-10
FACTOR LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

A: Sand compaction Plant X Plant Y Plant Z

B: Gating type Plant X Plant Y Plant Z

C: Metal head Low High

D: Sand supplier Supplier 1 Supplier 2

E: Coating type Type 1 Type 2 Type 3 Type 4

F: Sand permeability 300 perm 400 perm

G: Metal temperature 1430°F 1460°F

H: Quench type 450°F 725°F

I: Gas level Absent High amount
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as 3 DOF because it includes a dummy level. Thus, the total DOF 
for the experiment is:

6 variables at 2 levels each ... 6 DOF
1 variable at 4 levels each ... 3 DOF
2 variables at 3 levels each ... 6 DOF (dummy treated)

Total DOF = 15

L16 has 15 DOF and therefore is suitable for the design. The 
three sets of interacting columns used for column upgrading are 
1 2 3, 4 8 12, and 7 9 14. The column preparation and assignment 
follows these steps.

1. Discard column 3 and use columns 1 and 2 to prepare a 
four-level column, then dummy treat it to a three-level 
column. Place it as column 1. Assign factor A (sand com-
paction) to this column.

2. Discard column 12 and use columns 4 and 8 to create a 
four-level column first, then dummy treat it to a three-level 
column. Call it column 4. Assign factor B (gating type) to 
this column.

3. Discard column 14 and use columns 7 and 9 to create a four-
level column for factor E (coating type). Call it column 7.

4. Assign the remaining seven two-level factors to the rest of 
the two-level columns, as shown in Table 5-30(a).

The detail array modified to produce two three-level and one 
four-level column is shown in Table 5-30(b). Table 5-30(c) shows 
the modifications to create three four-level columns and the 
dummy treatment of two columns to three-level columns. Note 
that in new column 1, the four dummy levels 1  occur together. 
In this case, to avoid any undesirable bias due to level 1, the ex-
periment should be carried out by selecting trial conditions in a 
random order.

Description of Experimental Conditions
Once the factors are assigned, the 16 trial runs are described 

by the rows of the OA (modified), as shown in Table 5-30(b). With 
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experience, the run conditions are easily read from the array. 
But for the inexperienced, and for large arrays, translating the 
array notations into actual descriptions of the factor levels may 
be subject to error. Computer software [7] is available to reduce/
eliminate chances of such errors. A printout of the trial conditions 
for sample trial runs is shown in Table 5-30(d).

Main Effect Plots for Three-Level and Four-Level Factors
The analysis of experimental data follows the same steps as 

before. The results of a single test run at each of the 16 conditions 
are shown in Table 5-30(e). The main effects of the factors are 
presented in Table 5-30(f); the effects for the three- and four-level 

Table 5-30(a). Casting process optimization design—Example 5-10   
(Design variables and their levels)

COLUMN FACTOR LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Sand compaction Plant X Plant Y Plant Z

2 (Used with Col 1) M/U

3 (Used with Col 1) M/U

4 Gating type Plant X Plant Y Plant Z

5 Metal head Low High

6 Sand supplier Supplier 1 Supplier 2

7 Coating type Type 1 Type 2 Type 3 Type 4

8 (Used with Col 4) M/U

9 (Used with Col 7) M/U

10 Sand perm 200 perm 300 perm

11 Metal temperature 1430°F 1460°F

12 (Used with Col 4) M/U

13 Quench type 450°F 725°F

14 (Used with Col 7) M/U

15 Gas level None High

Note: Modified columns 1 2 3, 4 8 12, and 7 9 14.
No interaction.
Objective: Determine process parameter for best casting.
Characteristic: Bigger is better.
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factors are displayed in Figure 5-11. The optimum combination 
is easily determined by plotting the main effects of all factors, 
or from the data of Table 5-30(f) of the main effects by selecting 
the higher values (because the quality characteristic is “the big-
ger the better”). Note that for sand compaction the middle level 
produces the highest value. Such nonlinear behavior of the factor 
was suspected from previous experience; hence, three levels were 
selected for the experiment.

COMBINATION DESIGN

Consider an experiment involving three three-level factors and 
two two-level factors. An experiment design could consider an L16
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OA with three columns for each of the three-level factors and two 
additional columns for the two-level factors. Such a design will 
utilize 11 of the available 15 columns and require 16 trial runs for 
the experiment. Alternatively consider the L9 OA. Three columns 
satisfy the three-level factors. If the fourth column can be used to 
accommodate two two-level factors, then L9 with only nine trial 
runs could be used.

Indeed, it is possible to combine two two-level factors into a single 
three-level factor, with some loss of confidence in the results and loss 
of opportunity to study interactions. The procedure is given below.

Table 5-30(c). Casting process optimization design—Example 5-10   
(Column upgrading procedure)

1 2 and 3 to form a
3 level col., “New 1”

4 8 and 12 to form a
3 level col., “New 4”

7 9 and 14 to form a
4 level col., “New 7”

1 2 3 NEW 1 4 8 12 NEW 4 7 9 14 NEW 7

1      1      1 1 1      1      1 1 1      1      1 1

1      1      1 1 1      2      1 2 1      2      2 2

1      1      1 1 2      1      2 3 2      1      2 3

1      1      1 1 2      2      1 4 = 1 2      2      1 4

1      2      2 2 1      1      1 1 2      1      2 3

1      2      2 2 1      2      2 2 2      2      1 4

1      2      2 2 2      1      2 3 1      1      1 1

1      2      2 2 2      2      1 4 = 1 1      2      2 2

2      1      2 3 1      1      1 1 2      2      1 4

2      1      2 3 1      2      2 2 2      1      2 3

2      1      2 3 2      1      2 3 1      2      2 2

2      1      2 3 2      2      1 4 = 1 1      1      1 1

2      2      1 4 = 1 1      1      1 1 1      2      2 2

2      2      1 4 = 1 1      2      1 2 1      1      1 1

2      2      1 4 = 1 2      1      2 3 2      2      1 4

2      2      1 4 = 1 2      2      1 4 = 1 2      1      2 3

Note: ( ) indicates dummy-treated levels
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Define a new factor (XY) to be formed out of the combination 
of X and Y and assign it to column 4. From the four possible com-
binations X and Y (X1Y1, X2Y1, X1Y2, and X2Y2), select any three 
and label them as stated below:

X1Y1 as (XY)1 that is, level 1 of new factor (XY)
X2Y1 as (XY)2 that is, level 2 of new factor (XY)
X1Y2 as (XY)3 that is, level 3 of new factor (XY)

Note that one combination, X2Y2, is not included. With factor 
XY assigned, an L9 OA is shown in Table 5-31. From the array, the 
trial run conditions defined for trial 1 (row 1) are A1 B1 C1 (XY)1,
where (XY)1 is X1Y1, which was defined above.

Table 5-30(d). Description of individual trial conditions—Example 5-10
TRIAL 1

Sand compaction M/C = Plant X …Level 1

Gating type = Plant X …Level 1

Metal head = Low …Level 1

Sand supplier = Supplier 1 …Level 1

Coating type = Type 1 …Level 1

Sand perm = 300 perm …Level 1

Metal temperature = 1430°F …Level 1

Quench type = 450°F …Level 1

Gas level = Absent/none …Level 1

TRIAL 2

Sand compaction M/C = Plant X …Level 1

Gating type = Plant Y …Level 2

Metal head = Low …Level 1

Sand supplier = Supplier 1 …Level 1

Coating type = Type 2 …Level 2

Sand perm = 400 perm …Level 2

Metal temperature = 1460°F …Level 2

Quench type = 725°F …Level 2

Gas level = High …Level 2
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Table 5-30(e). Casting process optimization data—Example 5-10
REPETITION

TRIAL

R1 R2 R3 R4 R5 R6

AVG.

1 67.00 67.00

2 66.00 66.00

3 56.00 56.00

4 67.00 67.00

5 78.00 78.00

6 90.00 90.00

7 68.00 68.00

8 78.00 78.00

9 89.00 89.00

10 78.00 78.00

11 69.00 69.00

12 76.00 76.00

13 78.00 78.00

14 66.00 66.00

15 77.00 77.00

16 87.00 87.00

Table 5-30(f). Casting process optimization design main effects—        
Example 5-10

COLUMN FACTOR LEVEL 1 LEVEL 2 (L2 – L1) LEVEL 3 LEVEL 4

1 Sand compaction 70.50 78.50 8.00 78.00 00.00

4 Gating type 77.50 75.00 –2.50 67.50 00.00

5 Metal head 76.25 72.50 –3.75 00.00 00.00

6 Sand supplier 76.25 72.50 –3.75 00.00 00.00

7 Coating type 69.25 72.75 3.50 74.75 80.75

10 Sand permeability 75.25 73.50 –1.75 00.00 00.00

11 Metal temperature 75.00 73.75 –1.25 00.00 00.00

13 Quench type 72.50 76.25 3.75 00.00 00.00

15 Gas level 75.50 73.25 –2.25 00.00 00.00
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The total data are analyzed with the two factors X and Y
treated as one, (XY). The analysis yields the main effect of (XY). 
The individual effect of the constituents X and Y is then obtained 
as follows:

Main effect of  and

Main effect of 

X XY XY

Y XY XY

1 2

1 3

Table 5-31. L9 with five factors

FACTOR

COLUMN

EXPERIMENT

A

1

B
2

C

3

(XY)

4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 3

8 3 2 1 3

9 3 3 2 1
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Figure 5-11. Plots of main effects—Example 5-10
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The first equation above, which can be expanded as (X1Y1)
– (X2Y1), shows the effect of X when Y is fixed at Y1. The second 
equation, which can be expanded as (X1Y1) – (X1Y2), shows the 
effect of Y when X is fixed at X1.

After determining the main effects, the optimum condition, 
including the levels of the two factors used in combination design, 
can be identified. However, the interaction effects between factors 
X and Y cannot be obtained from the data by this method. Should 
interaction be important, the experiment design must be based 
on a larger array such as L16.

DESIGNING EXPERIMENTS TO REDUCE VARIABILITY

Variation is a law of nature. No two things in nature are alike. 
Examined carefully, man/machine-made parts of a kind also differ. 
Our goal in quality improvement is to reduce variation. Therefore, 
variation is our number-one enemy.

Robust products and processes perform consistently on target. 
To build robustness, we must reduce variability in performance. 
But what causes variability? 

Throughout this text, the terms factors, variables, and param-
eters synonymously refer to factors that influence the outcome of 
the product or process under investigation. Taguchi further cat-
egorized the factors as controllable factors and noise factors. The 
factors identified for the baking process experiment, namely, sugar, 
butter, eggs, milk, and flour, were easily controlled factors. Other 
factors that are less controllable or too expensive to control, such 
as oven temperature distribution, humidity, oven temperature cycle 
band width, and so on, may also influence the optimum product.

Variation in performance occurs mainly due to the influence 
of control factors and noise factors (uncontrollable). While DOE 
can identify the influential control factors that can indeed be 
adjusted to improve the consistency in performance, for most 
systems the uncontrollable factors are the main cause of varia-
tion. In planned DOE, the results vary when a trial condition is 
repeated. As statistical principles dictate, the more the samples 
are tested in the same condition the better the information about 
the variability. Obviously, to capture variability information from 
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DOE experiments, we must repeat experiments—in other words, 
have more samples tested in each trial condition.

Because variation is always present in tests with hardware, 
testing multiple samples is a necessity. The number of samples 
desired in a study is decided based on expected variability and the 
cost of the samples. More importantly, Taguchi followed a struc-
ture to repeat the test samples, exposing them to the influence of 
noise, as will be described later in this section.

Before Taguchi, the noise factors were popularly known as nui-
sance factors. At different times, different methods were followed 
to deal with them, often trying to control such uncontrollable fac-
tors as temperature, humidity, dust in the air, tool wear, and so 
on. Unfortunately, there were no effective and standard means of 
dealing with the noise factors. In this regard, Dr. Taguchi offered 
a revolutionary strategy that caught the attention of the scientific 
world. His approach has been to not go after the uncontrollable 
factors, but simply to find other ways to do the job such that the 
product is shielded from such influence. His strategy for robust 
design is to reduce variability of the product/process without actu-
ally removing the cause of variation. He chooses to leave the noise 
alone and instead to find suitable levels of the control factors that 
produce results most immune to noise influence.

In his robust design strategy, Taguchi seeks the desired design 
not by selecting the best performance under ideal condition but 
instead by looking for a design that produces consistent perfor-
mance in the face of uncontrollable factors. To find the factor 
level most robust to noise influence, Taguchi relies heavily on 
the interaction between noise and control factors. Interestingly, 
critiques of the Taguchi methodologies have been pointing to the 
lack of emphasis on interaction, which many hold as an important 
part of the analyses.

ROBUST DESIGN STRATEGY

The key to robust design is noise and control factor interac-
tions. When tests are repeated in the same trial condition, the 
influence of noise factors in the system will cause variation from 
sample to sample. Because the noise factors are those that are 
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uncontrollable in the production environment, the goal is to se-
lect the levels of the controllable factors that produce minimum 
variation when exposed to the noise factors. Consider the simple 
example below to understand the concept.

Example 5-11

In a simple study to determine the influence of alcohol con-
sumption during different types of meals on blood alcohol content 
(BAC), the test parameters were defined as:

Controllable factor—
A: Type of meals
(two levels: A1 = light snack, A2 = steak dinner)

Noise factor—
N: Type of alcohol
(two levels: N1 = hard liquor, N2 = light beer)

Assume that the individuals under observation have no control 
over the drinks he/she will be served, but do have control over the 
meals consumed before going to a party. The effects of alcohol con-
sumption when meals are of the type described are found to be:

A1N1 = 50, A2N1 = 30, A1N2 = 25, and A2N2 = 20

The numbers shown are the likelihood of exceeding the BAC limit.
From the above data, the control factor and noise effects can 

be plotted by taking two data points at a time from the set of four 
data [Fig. 5-12(a) and 5-12(b)]. These plots showing the effects of 
one factor at various levels of the other are called interaction plots. 
The angle between the lines, if present, indicates the strength of 
the presence of interaction. The first of the two plots [Fig. 5-12(a)] 
indicates that there is interaction between meals and alcohol 
consumption because the lines are not parallel. The second plot 
[Fig. 5-12(b)], however, is of most interest. This graph presents 
the same interaction showing the effects of noise (alcohol) at two 
levels of the control factor (meals). From the slope of the two lines, 
it is obvious that the influence of alcohol is much less (shallower 
line) when a steak dinner is consumed (A2). So, given an option, 



106 A Primer on the Taguchi Method
Le

ve
l o

f i
nt

ox
ic

at
io

n

A1 = Light snack A2 = Steak dinner

A N1 1 = 50

A N1 2 = 25
A N2 1 = 30

A N2 2 = 20

N1 = Hard liquor

N2 = Light beer

Figure 5-12(a). Type of meal and alcohol interaction plot (factor along x-
axis)—Example 5-11
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A1 = Light snack

A2 = Steak dinner

A N1 1 = 50

A N1 2 = 25
A N2 1 = 30

A N2 2 = 20

N1 = Hard liquor N2 = Light beer

Figure 5-12(b). Alcohol and type of meal interaction plot (noise along x-
axis)—Example 5-11
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a steak dinner will be more resistant to the influence of alcohol. 
Obviously, the same concept can be applied to interaction between 
any control factor and noise in industrial settings.

In the sections that follow, the robust-level selections of mul-
tiple factors against single and multiple noises will be described. 
But because all such experiments will include testing multiple 
samples in each trial conditions, new ways of analyzing multiple 
sample results will be covered first.

S/N RATIO—A SMARTER WAY TO ANALYZE MULTIPLE SAMPLE RESULTS 

For some experiments, trial runs are easily and inexpensively 
repeated. For others, repetitions of tests are expensive as well as 
time consuming. Whenever possible, trials should be repeated, 
particularly if strong noise factors are present. Repetition of-
fers several advantages. First, the additional trial data confirm 
the original data points. Second, if noise factors vary during 
the day, then repeating trials through the day may reveal their 
influence. Third, additional data can be analyzed for variance 
around a target value.

When the cost of repetitive trials is low, repetition is highly 
desirable. When the cost is high or interference with the operation 
is high, then the number of repetitions should be determined by 
means of an expected payoff for the added cost. The payoff can be 
the development of a more robust production procedure or pro-
cess, or by the introduction of a production process that greatly 
reduces product variance.

Repetition permits determination of a variance index called 
the signal-to-noise (S/N) ratio. The greater this value, the smaller 
the product variance around the target value. The signal-to-noise 
ratio concept has been used in the fields of acoustics, electrical 
and mechanical vibrations, and other engineering disciplines 
for many years. Its broader definition and application will be 
covered in Chapter 6. The basic definition of the S/N ratio is 
introduced here.

To capture variability, all trial conditions of a planned experi-
ment are repeated such that they have multiple results. A common 
approach to analyze such results is to use the average of the trial re-
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sults for the optimum condition. Unfortunately, average alone does 
not capture complete information about the variability present.

Comparison of multiple data for a part:     
 8 9 10 => Avg. = 9
 7 9 11 => Avg. = 9
Comparing the averages of the above two sets, they would look 

the same. While the distribution of these two sets is different, it will 
not be captured unless information on standard deviation, range, 
scatter, and so on, are considered for the comparison purposes. A 
common indicator for variability is standard deviation ( ). Any 
scheme that allows comparison of both average and variability is 
a good measure of population performance.

Mean square deviation (MSD) is one such measure that de-
pends on both average and standard deviation of the data. But 
MSD requires separate definition for different quality character-
istics, as shown below.

S/N is a log (to the base 10) transformation of MSD for the 
convenience of linearity of influence and a wider range of data.

S/N = −10 log10 (MSD)
where MSD = mean square deviation from the target value of the 
quality characteristic.

Consistent with its application in engineering and science, the 
value of S/N is intended to be large; hence, the value of MSD should 
be small. Thus, the MSD is defined differently for each of the three 
quality characteristics considered, smaller, nominal, or larger.

For smaller is better:

MSD y y y n1

2

2

2

3

2

For nominal is best:

MSD y m y m n1

2

2

2

Note: It can be shown that MSD in this case equals 
2 2

Y mavg .
For bigger is better:

MSD 1 1 11

2

2

2

3

2y y y n



Working Mechanics of the Taguchi Design of Experiments 109

where y1, y2, etc. equal the results of experiments, observations, 
or quality characteristics such as length, weight, surface finish, 
and so on.

 = standard deviation
m = target value of results (above)
n = number of repetitions (yi)
Consider an experiment with three repetitions, using an L4

orthogonal array as shown in Table 5-32. In the table, trial 1 is 
repeated three times, R1, R2, and R3, with results 5, 6, and 7, re-
spectively. The average of these three repetitions is 6. The aver-
age is used for the study of the main effects in a manner similar 
to that described for nonrepeated trials. Slight differences in the 
analysis of variance for the repetitive case are covered in Chapter 
6. For experiments with repetitions, analysis should always use 
the S/N ratios computed as follows:

Assume that bigger is better is the quality characteristic sought 
by the experimental data of Table 5-32. Then,

MSD 1 1 11

2

2

2

3

2y y y n

Now, for row 1,

y y1

2

2

25 5 25 6 6 36

y n3

2 7 7 49 3

Therefore,

MSD 1 25 1 36 1 49 3

04 02777 020408 3

088185 3

. . .

.

Table 5-32. L4 with results and averages

COLUMN

TRIAL

1 2 3 R1 R2 R3

AVERAGE

1 1 1 1 5 6 7 6

2 1 2 2 3 4 5 4

3 2 1 2 7 8 9 8

4 2 2 2 4 5 6 5
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or

MSD = .029395, a small value.

The S/N ratio is calculated as:

S/N MSD10

10 029395

15 31

10

10

log

log .

.

S/N values for all rows are shown in Table 5-33.
In analysis, the S/N ratio is treated as a single data point at 

each of the test run conditions. Normal procedure for studies of the 
main effects will follow. The only difference will be in the selection 
of the optimum levels. In S/N analysis, the value of MSD or the 
greatest value of S/N represents a more desirable condition.

TWO-STEP OPTIMIZATIONS

In this approach, product and process designs are achieved by 
adjusting factor levels to reduce variability. The process follows two 
distinct steps, with the assumption that reduction of variability 
is more important than being on the target:

1. Reduce variability by adjusting the levels of factors deter-
mined to be influential

2. Adjust performance mean to target by adjusting those fac-
tors with less influence on variability

Dr. Taguchi recommends the two-step optimization strategy 
when multiple factors influence the outcome. The following ex-
ample demonstrates how robust factor levels are determined when 
there is only one major noise factor.

Table 5-33. L4 with results and S/N ratios

COLUMN

TRIAL

1 2 3 R1 R2 R3

S/N

1 1 1 1 5 6 7 15.316

2 1 2 2 3 4 5 11.47

3 2 1 2 7 8 9 17.92

4 2 2 2 4 5 6 13.62
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The optimization using the above two steps can be achieved by 
three different independent types of analyses: (a) noise-to-control 
factor interaction study, (b) mean and standard deviation analysis, 
and (c) analyses using S/N ratios of results. While all three types 
give a deeper understanding of the optimization process, the S/N 
analysis is the recommended approach. The three analyses are 
explained in the example using the same experimental results.

Example 5-12: Experimental Study to Reduce Rejects Due to Short Shots in an
Injection Molding Process

Objective: Reduce rejects due to short shots.
Quality characteristic: Percent of rejects with desirable per-

formance—smaller is better. 
Factors and levels: The top six of the list of 18 qualified and “Pa-

retoized” factors were selected for the study. To keep the size of the 
experiment small and study as many factors as possible, all factors 
were studied at two extreme ranges of values (two levels). These 
factors and their levels are shown next as a long list of qualified 
factors in descending order of importance to the project team.

 1. Injection pressure
2. Mold closing speed
3. Mold pressure
4. Backpressure
5. Screw speed
6. Spear temperature
7. Manifold temperature
8. Mold opening speed
9. Mold opening time

10. Forward screw speed
11. Nozzle heater-on time
12. Screw retract speed
13. Cooling time
14. Holding pressure time
15. Ejection speed
16. Coolant type (water/oil)
17. Room temperature (cold/warm)
18. Operator skill level (new/experienced)
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Selected factors and their levels (six among 18 factors selected 
for the study) are shown in Table 5-34. 

Interaction: Interaction between factors A and B (A × B) was 
identified but not studied.

Noise factors: Among the factors identified, the coolant type 
was considered uncontrollable, noise factor: Coolant type (water 
= N1 and oil = N2)

Scope of Experiment: Based on the number of factors (six two-
level factors and one interaction), the experiment using an L-8 
array and six samples, three in each noise condition, were tested 
in each trial condition.

The experiment design [Fig. 5-13(a)] shows how the six factors 
are assigned. The results collected after the tests exposing them 
to the two noise levels are shown in Figure 5-13(b). The three 
columns next to the results show the average values under each 
noise level (N1 and N2) and the average of all results in a trial.

(a) Two-Step Optimization Using Noise and Control Factor Interaction

The values of the trial averages [Fig. 5-13(b)] are used to 
calculate the combined factor and noise (A1N1, A2N1, and so on) 
effects and their plots as shown in Figure 5-13(c).

The combined effect of factor A and noise is calculated as:

Table 5-34. Selected factors and their levels—Example 5-12
(Six among 18 factors selected for the study)

NOTATION FACTOR DESCRIPTION LEVEL 1 LEVEL 2

A Injection pressure 1,800 psi 2,250 psi

B Mold closing speed Low
(not revealed)

Moderate

C Mold pressure 600 psi
(4.1 MPa)

950 psi

D Backpressure 950 psi 1,075 psi

E Screw speed 50 sec. 65 sec.

F Spear temperature 325°C 380°C

Interaction Between factors A and B (A × B), column 3 reserved
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Average effect of A1N1 =
(11.5 + 8.70 + 11.7 + 12.70)/4 = 11.15 (Highlighted data)

Average effect of A2N1 =
(13.7 + 13.4 + 12.5 + 12.0)/4 = 12.90

Similarly, all other combined effects [Fig. 5-13(c)] are calculated 
and are used to plot factor effects at each level using N1 and N2
along the x-axis. For example, A1N1 (11.5) and A1N2 (13.49) are 

Figure 5-13(a). Experimental design for six two-level factors and noise 
exposure—Example 5-12

FACTOR RESULTS (y) AVERAGE

TRIAL A B – C D E F N1 N2 N1 N2 y

1 1 1 1 1 1 1 1 11.5 11.8 11.3 14.1 14.5 13.8 11.5 14.3 12.8

2 1 1 1 2 2 2 2 9.2 8.7 8.2 9.3 10.7 9.6 8.7 9.9 9.3

3 1 2 2 1 1 2 2 11.7 11.8 11.5 14.3 14.4 14.1 11.7 14.3 12.9

4 1 2 2 2 2 1 1 12.7 12.7 12.6 15.6 15.6 15.4 12.7 15.5 14.1

5 2 1 2 1 2 1 2 13.8 13.5 13.8 13.3 12.8 12.4 13.7 12.8 13.3

6 2 1 2 2 1 2 1 13.2 13.5 13.4 16.2 16.6 16.4 13.4 16.4 14.9

7 2 2 1 1 2 2 1 12.6 12.9 12.1 15.4 15.8 14.8 12.5 15.3 13.9

8 2 2 1 2 1 1 2 12.3 11.7 12 15.1 14.3 14.2 12.0 14.7 13.3

Grand averages => 12.0 14.1 13.1

Figure 5-13(b). Experimental results and calculated trial results averages—
Example 5-12

FACTOR RESULTS

TRIAL A B – C D E F Noise N1 Noise N2

1 1 1 1 1 1 1 1
For each trial condition:

3 sample results were 
exposed to noise
condition N1.

3 sample results were 
exposed to noise
condition N2.

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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used to obtain plot of A1 line. Plots for all other factor level effects 
are obtained in the same manner. 

Review of the noise and control factor interaction plots [Fig. 
5-13(c)] shows that the plots for factors B, C, D, and F have more 
angle between the lines, indicating that there is significant in-
teraction. Because, for robust design, the line with a shallower 
angle to horizontal is likely to produce less variation, levels B1, C1,

NOISE AND CONTROL FACTOR INTERACTION EFFECTS

A1 A2 B1 B2 C1 C2 D1 D2 E1
E2 F1 F2

Noise N1 11.15 12.90 11.82 12.21 12.36 11.68 12.14 11.90 12.48 11.57 12.52 11.52

Noise N2 13.49 14.82 13.31 14.97 14.15 14.13 14.88 13.39 14.30 13.98 15.35 12.93

Figure 5-13(c). Calculated noise and control factor interactions and plots 
(N×A, N×B, ..., N×F)—Example 5-12

15.50
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13.50
13.00
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11.50

11.0
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B2

C1

C2
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FACTOR AVERAGE EFFECTS (MAIN EFFECTS)

A B – C D E F

Level 1 12.29 12.57 – 13.25 13.49 13.37 13.94

Level 2 13.84 13.57 – 12.88 12.65 12.78 12.20

Diff. L2 – L1 1.54 1.00 – –.37 –.84 –.60 –1.74

Figure 5-13(d). Calculated factor average effects and plots (Main effects of 
A, B, C, D, E, and F)

14.00
13.80

13.60
13.40

13.20
13.00

12.80

12.60

12.40

12.20

A1 B1 C1Factor Factor FactorA2 B2 C2

14.00
13.80

13.60
13.40

13.20
13.00

12.80

12.60

12.40

12.20

D1 E1 F1Factor Factor FactorD2 E2 F2

D2, and F2 are the choices for these factors. Factors A and E are 
considered to have interaction of lesser degree and are treated by 
analysis using the main effects of factors.

Main effects of factor are plotted from the calculated average 
effects using the trial result averages [last column in Fig. 5-13(b)], 
as shown in Figure 5-13(d). The levels of the remaining two fac-
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tors, A and E, now can be identified from the lower values (QC = 
smaller is better) of the factor average effects as A1 and E2.

Optimization Step Summary

1. Reduce variability by identifying the factors that interact 
with noise.
• Factors with strong interaction: B, C, D, F [A and E are 

found to have less interaction with N; see interaction plot 
Figure 5-13(c)].

• Levels for least variability: B1, C1, D2, and F2
2. Adjust mean by selecting factors with least interaction 

with noise.
• Factors with lesser interaction: A and E
• Levels for mean closer to target: A1 and E2 (smaller is 

better QC, see plots of main effect above)

(b) Two-Step Optimization Using Mean and Standard Deviation

This type of analysis uses standard deviation ( ) of trial re-
sults for selecting robust factor levels along with main effects for 
adjusting mean response. Using the same trial results, standard 

FACTOR RESULTS (y) AVG SD

TRIAL A B – C D E F N1 N2 y

1 1 1 1 1 1 1 1 11.5 11.8 11.3 14.1 14.5 13.8 12.8 1.45

2 1 1 1 2 2 2 2 9.2 8.7 8.2 9.3 10.7 9.6 9.3 0.85

3 1 2 2 1 1 2 2 11.7 11.8 11.5 14.3 14.4 14.1 12.9 1.43

4 1 2 2 2 2 1 1 12.7 12.7 12.6 15.6 15.6 15.4 14.1 1.57

5 2 1 2 1 2 1 2 13.8 13.5 13.8 13.3 12.8 12.4 13.3 0.56

6 2 1 2 2 1 2 1 13.2 13.5 13.4 16.2 16.6 16.4 14.9 1.67

7 2 2 1 1 2 2 1 12.6 12.9 12.1 15.4 15.8 14.8 13.9 1.59

8 2 2 1 2 1 1 2 12.3 11.7 12 15.1 14.3 14.2 13.3 1.43

Grand averages=> 13.1 1.32

Figure 5-13(e). Experimental results and calculated standard deviation of 
trial results—Example 5-12
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deviation and averages are calculated [Fig. 5-13(e)]. Figure 5-13(f) 
shows the average effects of factor on  and the plots. Because vari-
ability is never desirable, regardless of the quality characteristic 
of the process under study, a smaller value (smaller is better) of 
becomes the levels for robust design. Based on the variability [Fig. 

FACTOR EFFECTS ON STANDARD DEVIATION OF RESULTS

A B – C D E F

Level 1 1.33 1.13 – 1.26 1.50 1.26 1.57

Level 2 1.31 1.51 – 1.38 1.14 1.38 1.07

Diff. L2 – L1 –.01 .37 – .12 .35 .13 –.50

Figure 5-13(f). Calculated average factor effects on standard deviation and 
plots—Example 5-12
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1.25

1.20

1.15
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A1 B1 C1Factor Factor FactorA2 B2 C2
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1.45
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1.35
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5-13(f)], factors B, D, and F are found significant and their levels 
for robust design are B1, D2, and F2. The levels of the remaining 
factors are selected based on the main effects as before [A1, C2,
and E2 from Fig. 5-13(d)].

Optimization Step Summary

1. Reduce variability by identifying factors with significant 
effects of standard deviation of results.
• Significant factors: B, D, and F (A and E are found to have 

less interaction with N, see interaction plots above)
• Levels for least variability: B1, D2, and F2

2. Adjust mean by selecting factors with less interaction 
with noise.
• Factors with lesser effects on standard deviation: A, C,

and E
• Factor levels: A1, C2, and E2 (smaller is better QC, see 

plots of main effect above)

(c) Two-Step Optimization Using S/N Ratios

S/N of the trial results [Fig. 5-13(g)], which is directly related 
to deviation of results from the target, is used for computing fac-

RESULTS (y)

Tr A B – C D E F N1 N2 S/N RATIO

1 1 1 1 1 1 1 1 11.5 11.8 11.3 14.1 14.5 13.8 –22.21

2 1 1 1 2 2 2 2 9.2 8.7 8.2 9.3 10.7 9.6 –19.38

3 1 2 2 1 1 2 2 11.7 11.8 11.5 14.3 14.4 14.1 –22.30

4 1 2 2 2 2 1 1 12.7 12.7 12.6 15.6 15.6 15.4 –23.03

5 2 1 2 1 2 1 2 13.8 13.5 13.8 13.3 12.8 12.4 –22.46

6 2 1 2 2 1 2 1 13.2 13.5 13.4 16.2 16.6 16.4 –23.50

7 2 2 1 1 2 2 1 12.6 12.9 12.1 15.4 15.8 14.8 –22.93

8 2 2 1 2 1 1 2 12.3 11.7 12 15.1 14.3 14.2 –22.50

Grand averages => –22.29

Figure 5-13(g). Experimental results and calculated S/N ratios—Example 
5-12
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tor average effects as shown in Figure 5-13(h). By definition, no 
matter the quality characteristic of the original results, larger 
values of S/N always represent lower variation.

Based on the plot above, the factor levels that shows the high-
est S/N values are: A1, B1, C2, D2, E2, and F2. All significant factors 
now can be identified from the rest by performing ANOVA shown 

FACTOR AVERAGE EFFECTS BASED ON S/N RATIOS

A B – C D E F

Level 1 –21.73 –21.89 – –22.48 –22.63 –22.55 –22.92

Level 2 –22.847 –22.69 – –22.10 –21.95 –22.03 –21.66

Diff. L2 – L1 –1.12 –.80 – .37 .68 .52 1.26

Figure 5-13(h). Plot of average effects of factors (S/N effects of A, B, C, D, 
E, and F)—Example 5-12
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in Figure 5-13(i). Calculation of ANOVA terms and its use will be 
discussed later (Chapter 6). Our immediate attention is directed 
to only the last column of ANOVA, which represents the relative 
percent influence of the factors to the variability of results in 
statistical and discrete terms.

From ANOVA, factors C and E are found to be insignificant 
(pooled) and are ignored in the estimation of the expected per-
formance at optimum conditions below. Like in the previous two 
types of analyses, the levels of factors C and E are determined 
from the factor average effect plot [Fig. 5-13(d)] using the smaller 
is better quality characteristic.

Optimum condition: A1 B1 D2 F2 (factors C and E are pooled)

Yopt 22 29 21 73 22 29 21 89 22 29

21 95 22 29

. . . . .

. . 221 66 22 29

22 29 0 56 0 4 0 34 0 63

22 29 1 93

20

. .

. . . . .

. .

..36 S/N

(which translates to 10.4 in the original units of  results)

#
FACTOR AND
INTERACTION DOF SS V F S P (%)

1 A: Injection pressure 1 2.486 2.486 6.031 2.073 18.96

2 B: Mold closing sp. 1 1.277 1.277 3.099 .865 7.91

3 Interaction A × B 1 2.277 2.277 5.525 1.865 17.05

4 C: Mold pressure (1) (.278) Pooled

5 D: Back pressure 1 .915 .915 2.222 .503 4.60

6 E: Screw speed (1) (.545) Pooled

7 F: Spear temperature 1 3.156 3.156 7.657 2.743 25.09

Other/Error 2 .824 .412 26.38

Total 7 10.937 100%

Figure 5-13(i). ANOVA statistics (S/N of results)—Example 5-12
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Optimization Step Summary

1. Reduce variability by identifying factors with significant 
effects on S/N.
• Significant factors: A, B, D, and F
• Factor levels: A1, B1, D2, and F2 (larger S/N)

2. Adjust mean by selecting factors with lesser effect on S/N.
• Factors with lesser effects on S/N: C and E
• Factor levels: C2 and E2 (smaller is better, main effect)

ROBUST DESIGNS AGAINST MULTIPLE NOISES

Repetitions show the variation of the product or process. The 
variation occurs principally as a result of the uncontrollable fac-
tors (noise factors). By expanding the design of the experiment to 
include noise factors in a controlled manner, optimum conditions 
insensitive to the influence of the noise factors can be found. These 
are Taguchi’s robust conditions that control production close to 
the target value despite noise in the production process. Gener-
ally, the treatment of noise and control factors varies depending 
on the experimental studies undertaken during the stages of 
engineering and production, as depicted in Figure 5-14.

Before describing how the uncontrollable factors are treated, 
additional definitions are needed:

N
um

be
r o

f f
ac

to
rs Control

factors
Noise
factors

R&D    Adv. Eng.    Design & Devel.    Test & Valid.    Mfg. & Prod.

Figure 5-14. Presence of control and noise factors in various stages of 
product development
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Controllable factors—Factors whose levels can be specified 
and controlled during the experiment and in the final design of 
the product or process.

Noise factors—These are factors that have influence on the 
product or process results but generally are not maintained at spe-
cific levels during the production process or application period.

Inner array—OA of the controllable factors. All experiment 
designs discussed to this point fall into this category.

Outer array—OA of recognized noise factors. The term outer 
or inner refers to the usage rather than to the array itself, as will 
be made clear soon.

Experiment—This refers to the whole experimental process.
Trial condition—Combination of factors/levels at which a trial 

run is conducted.
Conditions of experiment—Unique combinations of factor 

levels described by the inner array (orthogonal array).
Repetitions or runs—These define the number of observations 

under the same conditions of an experiment.

The experiment requires a minimum of one run per condition. 
But one run does not represent the range of possible variability in 
the results. Repetition of runs enhances the available information 
in the data. Taguchi suggests guidelines for repetitions.

To incorporate noise factors into the design of the experiment, 
the factors and their levels are identified in a manner similar to 
those used for other product and process factors (control factors). 
For example, if humidity is considered noise, the low and high 
levels may be considered a factor for the design. After determin-
ing the noise factors and their levels for the test, OAs are used to 
design the conditions of the noise factors that dictate the number 
of repetitions for the trial runs. The OA used for designing the 
noise experiment is called an outer array.

Assume that three noise factors are identified for the cake 
baking experiment (Tables 5-12 and 5-16), which utilized an L8 OA. 
The noise factors are to be investigated at two levels each. There 
are four possible combinations of these factors. To obtain complete 
data, each trial run of L8 must be repeated for each of the four noise 
combinations. The noise array selected is an L4 OA. This outer array, 



Working Mechanics of the Taguchi Design of Experiments 123

with four combinations of the three noise factors, tests each of the 
eight trial conditions four times. The experiment design with inner
and outer array is shown by Table 5-35. Note that for the outer array,
column 3 represents both the third noise factor and the interaction 
of the first and second noise factor. Note also the arrangement of 
each array, with the noise (outer) array perpendicular to the inner 
array. The complete design is shown by Table 5-36.

For most simple applications, the outer array describes the 
noise conditions for the repetitions. This formal arrangement 
of the noise factors and the subsequent analysis influences the 
combination of the controllable factors for the optimum condition. 
The use of S/N ratio in analysis is strongly recommended.

Table 5-35. Inner and outer orthogonal arrays

N
O

IS
E 

FA
C

TO
RS

3 1 2 2 1

Outer array 2 1 2 1 2

1 1 1 2 2

Inner array

C
O

LU
M

N

EX
PE

RI
M

EN
T

1 2 3 4

CONTROL FACTORS RESULTS

COLUMN

EXPERIMENT

1 2 3 4 5 6 7
1 2 3 4

1 1 1 1 1 1 1 1

2 1 1 1 2 2 2 2

3 1 2 2 1 1 2 2

4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2
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DESIGN AND ANALYSIS SUMMARY
Application of the Taguchi technique is accomplished in two 

phases: (1) design of the experiment, which includes determining 
controllable and noise factors and the levels to be investigated, 
which determines the number of repetitions, and (2) analysis of 
the results to determine the best possible factor combination from 
individual factor influences and interactions. The two activities, 
experiment design and analysis of test data, are presented (flow 
charts) in Figures 5-15 and 5-16. The steps involved are briefly 
described here.

Table 5-36. Cake baking experiment with noise factors

8 7 6 5 4 3 2 1 C
O

LU
M

N

EXPERIM
EN

T

FACTOR
DESCRIPTION

LEVEL 1 LEVEL 2

2 2 2 2 1 1 1 1 1

Eggs 2 eggs 3 eggs

2 2 1 1 2 2 1 1 2

Milk 2 cups 3 cups

1 1 2 2 2 2 1 1 3

2 1 2 1 2 1 2 1 4
Butter 1 stick 1.5 sticks

1 2 1 2 2 1 2 1 5

Flour 1 extra scoop 2 extra scoops

1 2 2 1 1 2 2 1 6

2 1 1 2 1 2 2 1 7

Sugar 1 spoon 2 spoons

TYPE OF
OVEN:

1. Gas
2. Electric

BAKING
TIME:

1. +5 min.
2. –5 min.

HUMIDITY
1. 80%
2. 60%

COLUMN

EXPERIMENT

1 2 3

R
1 1 1 1 1

R
2 2 1 2 2

R
3 3 2 1 2

R
4 4 2 2 1
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EXPERIMENT
DESIGN

 Consider noise factor
 Deter mine noise condition using outer array
 Deter mine number of repetitions

 Run experiments in random order when possible

Simple design using
standard arrays

Designs with mixed levels
and interactions

 Modify columns
 Assign factors requiring
level modification

 Assign interacting factors
 Assign all other factors

Assign factors to columns
as appropriate

Figure 5-15. Experiment design flow diagram

TYPES OF ANALYSIS

Without repetition With repeated results

Under noise condition
or simply repeated

S/N analysisStandard analysis

• Nominal is best
• Smaller is better
• Bigger is better

Figure 5-16. Analysis flow diagram
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Design of the Experiment

Depending on the factors and levels identified, follow one of 
the two paths (Fig. 5-15). If all the factors are of the same level, 
say 2, one of the standard OAs can probably be used. In this case, 
the factors can be assigned to the columns without much consid-
eration about where they should be placed. On the other hand, if 
the factors require many levels, or one or more interactions are 
to be investigated. Then carefully select certain specific columns 
for factor assignments or level changes. No matter how simple 
the design, the applicable noise conditions should be identified 
and a second array (outer array) selected to include noise effects. 
The number of repetitions will be dictated by the number of 
noise factors. In the absence of a formal layout such as Table 5-
35, the number of repetitions will be influenced by time and cost 
considerations.

Analysis of Results

Analysis of results follows either paths (Fig. 5-16) of repetitions 
or no repetition. Generally, for a single observation for each trial 
condition, the standard analysis approach is followed. When there 
are repetitions of the trial runs, whether by outer array designed 
noise condition, or under random noise condition, S/N analysis 
should be performed. The final analysis for the optimum condition 
is based on one of the three characteristics of quality—greatest, 
smallest, or nominal.

EXERCISES

5-1. Identify each element (8, 2, 7, and so on) of the notation for
an orthogonal array L8 (2

7).
5-2. Design an experiment to study four factors, A, B, C, and D,

and three interactions, A × C, C × D, and A × D. Select the
orthogonal array and identify the columns for the three inter-
actions.

5-3. An experiment with three two-level factors yielded the follow-
ing results. Determine the average effect of factor C at levels
C1 and C2.
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5-4. Describe the procedure you will follow to design an experiment 
to study one three-level factor and four two-level factors.

5-5. In an experiment involving piston bearings, an L8 OA was used
in a manner shown in Table 5-37. Determine the description
of the trial 7.

5-6. The average effects of the factors involved in Problem 5 are as
shown in Table 5-38. If the quality characteristic is “the bigger
the better,” determine (a) the optimum condition of the design,
(b) the grand average of performance, and (c) the performance
at the optimum condition. [Ans. (b) 35.01, (c) 38.44]

Table 5-37. Design variables and their levels

COLUMN FACTOR NAME LEVEL 1 LEVEL 2

1 Speed 2100 RPM 250 RPM

2 Oil viscosity At low TP At high t

3 Interaction 1 × 2 N/A N/A

4 Clearance Low High

5 Pin straightness Perfect Bend

6 (Unused) M/U

7 (Unused) M/U

Table 5-38. Average factor effects

COLUMN FACTOR NAME LEVEL 1 LEVEL 2

1 Speed 34.39 35.63

2 Oil viscosity 35.50 34.52

3 Interaction 1 × 2 33.60 36.42

4 Clearance 35.62 34.40

5 Pin straightness 35.31 34.70
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THE ROLE OF ANOVA

Taguchi replaces the full factorial experiment with a lean, less 
expensive, faster, partial factorial experiment. Taguchi’s design 
for the partial factorial is based on specially developed orthogonal 
arrays (OAs). Because the partial experiment is only a selected 
set of the full factorial combinations, the analysis of the partial 
experiment must include an analysis of confidence to qualify the 
results. Fortunately, there is a standard statistical technique called 
analysis of variance (ANOVA) that is routinely used to provide a 
measure of confidence. The technique does not directly analyze 
the data but rather determines the variability (variance) of the 
data. Confidence is measured from the variance.

Analysis provides the variance of controllable and noise factors. 
By understanding the source and magnitude of variance, robust 
operating conditions can be predicted. This is a second benefit of 
the methodology.

ANOVA TERMS, NOTATIONS, AND DEVELOPMENT

In the analysis of variance, many quantities such as degrees of 
freedom, sums of squares, mean square, and so on, are computed 
and organized in a standard tabular format. These quantities and 
their interrelationships are defined below and their mathematical 
development is presented.

C.F. = correction factor n = number of trials
 e = error (experimental) r = number of repetitions
 F = variance ratio P = percent contribution
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f = degrees of freedom T = total (of results)
 fe = degrees of freedom S = sum of squares
   of error S = pure sum of squares
 fT = total degrees of V = mean square (variance)
   freedom

Total Number of Trials

In an experiment designed to determine the effect of factor A
on response Y, factor A is to be tested at L levels. Assume n1 repeti-
tions of each trial that includes A1. Similarly, at level A2 the trial 
is to be repeated n2 times. The total number of trials is the sum of 
the number of trials at each level, that is,

n n n nL1 2

Degrees of Freedom (DOF)

DOF is an important and useful concept that is difficult to 
define. It is a measure of the amount of information that can 
be uniquely determined from a given set of data. DOF for data 
concerning a factor equals one less than the number of levels. 
For a factor A with four levels, A1 data can be compared with A2,
A3, and A4 data but not with itself. Thus, a four-level factor has 
three DOF. The DOF concept is also applied to columns of OAs 
as well as the array itself. As with factors, the DOF of a column 
is its number of levels minus one. Finally, the DOF of an array is 
the sum of its column DOF. Thus, an L4 OA with three columns 
representing two-level factors has three DOF.

The concept of DOF can also be extended to the experiment. 
An experiment with n trials and r repetitions of each trial has n
× r trial runs. The total DOF becomes:

f n rT 1

Similarly, the DOF for a sum of squares term is equal to the 
number of terms used to compute the sum of squares, and the DOF 
of the error term, fe, is given by:

e T A B Cf f f f f
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Sum of Squares

The sum of squares is a measure of the deviation of the ex-
perimental data from the mean value of the data. Summing each 
squared deviation emphasizes the total deviation. Thus,

S Y YT i

i

n
2

1

where Y is the average value of Yi.
Similarly, the sum of squares of deviations, ST, from a target 

value, Y0, is given by

2 2

0

1

n

T i

i

S Y Y n Y Y (6-1-1)*

Variance measures the distribution of the data about the mean 
of the data. Because the data are representative of only a part of 
all possible data, DOF rather than the number of observations is 
used in the calculation.

*
S Y Y

Y Y Y Y

Y Y Y Y Y Y Y

T i

i

n

i

i

n

i i

0

2

1

0

2

1

2

02 Y

Y Y Y Y Y Y Y Y

i

n

i

i

n

i

i

n

0

2

1

2

1

0

1

0

2

2
ii

n

1

because Y Y Y Y nY nYi

i

n

i

i

n

i

n

1 1 1

0

and Y Y n Y Y
i

n

0

2

1

0

2

The above equation becomes S Y Y n Y YT i

i

n
2

1

0

2

.
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When the average sum of squares is calculated about the 
mean, it is called the general variance. The general variance, 2,
is defined as:

2
2

1

1 n

i

i

Y Y
n

(6-1-2)

Let m represent the deviation of the mean, Y , from the target 
value, Y0, that is,

2

0m Y Y (6-1-3)

Substituting Eqs. (6-1-2) and (6-1-3) into Eq. (6-1-1),
2 2 2 2

TS n nm n m (6-1-4)

Thus the total sum of squares of deviations (ST) from the target 
value (Y0) is the sum of the variance about the mean and the square 
of the deviation of the mean from the target value multiplied by 
the total number of observations made in the experiment.

ST of Eq. (6-1-4) also represents the expected statistical value 
of ST. In this book, rigorous proofs are omitted unless necessary to 
clarify an idea or concept. Further, the symbol ST is used for both 
the expected value and the computed value for a given sample.

The total sum of squares, ST (Eq. 6-1-4), gives an estimate 
of the sum of the variations of the individual observations about 
the mean, Y , of the experimental data and the variation of the 
mean about the target value, Y0. This information is valuable for 
controlling manufacturing processes, as the corrective actions 
to reduce the variations around the mean, Y , that is, to reduce 

2, are usually not identical to those actions that move the mean 
toward the target value. When the total sum of squares, ST, is 
separated into its constituents, the variation can be understood 
and an appropriate strategy to bring the process under control can 
be easily developed. Furthermore, the information thus acquired 
can be effectively utilized in statistical process control (SPC).

Variance
Sum of squares

Degrees of freedom

or V S fT
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Mean Sum (of Deviations) Squared

Let 0

1

n

i

i

T Y Y  be the sum of all deviations from the target 

value. Then, the mean sum of squares of the deviation is:
2

2

0

1

n

i

i

S T n Y Y n (6-2)

Eq. (6-2) can thus be written as:
2 *mS nm

It is important to note that even though from an oversimplistic 
derivation of the value of Sm = nm2, its statistical estimate or the 
expected value includes one part of the general variance. There-
fore, representing the statistically expected value by E(Sm):

2 2

m mE S S nm (6-3)

The term (ST − Sm) is usually referred to as the error sum of 
squares and can be obtained from Eqs. (6-1-4) and (6-3).

Therefore,
21e T mS S S n

Rewriting the equation, ST = Se + Sm. Thus, the total effect 
of variance, ST, can be decomposed into the mean deviation, Sm,
and the deviation, Se, about the mean. Thus, individual effects 
can be analyzed. Let

*
S

n
Y Y Y Ym n

1
1 0 0

2

which can also be expressed as:

S
n

Y Y Y nYm n

1
1 2 0

2

or S
n

nY nYm

1
0

2

or S
n

n
Y Y

S nm

m

m

2

0

2

2
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Y1 – Y0 = 3 Y4 – Y0 = 4

Y2 – Y0 = 5 Y5 – Y0 = 6

Y3 – Y0 = 7 Y6 – Y0 = 8

where Y0 is a target value, then

S

S

Y

T

m

3 5 7 4 6 8

199

3 5 7 4 6 8 6

33 6

181 5

3 5

2 2 2 2 2 2

2

2

.

7 4 6 8 6

5 5.

and S Y Ye 3 5

3 5 5 5 5 5 8 5 5

1

2 2

2 2 2
. . .

77 5.

Note that S S Se T m 199 181 5 17 5. .

Also, because the standard deviation of the data, 3, 5, 7, 4, 6, and 
8, is equal to 1.8708,

2

2

1

6 1 1.8708

17.5

eS n

Degrees of Freedom Sums

The DOF fe, fT, and fm of the sums of squares Se, ST, and Sm
are as follows:

fT = n = number of data points

fm = 1 (always for the mean)

fe = fT – fm = (n – 1)
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As pointed out earlier, the DOF fT is equal to n because there 
are n independent values of (Yi − Y0)

2. For investigating the effect 
of factors at different levels, the DOF is usually one less than the 
number of observations.

To summarize:
2 2

TS n nm (6-4)
2 2

mS nm (6-5)
21e T mS S S n (6-6)

Also, as stated earlier, variance V is

V S f

Therefore,

V S f m

V S f nm

T T T

m m m

2 2

2 2

total variance

mean variance

VV S S fe T m e

2 error variance

The example that follows should clarify the application of the 
concepts developed above. The data for this example are fictitious 
but suffice for the purpose of illustrating the principles.

ONE-WAY ANOVA

One-Factor One-Level Experiment

When one-dimensional experimental data (one response 
variable) are analyzed using ANOVA, the procedure is termed 
a one-way analysis of variance. The following problem is an ex-
ample of a one-way ANOVA. Later, ANOVA will be extended to 
multidimensional problems.

Example 6-1
To obtain the most desirable iron castings for an engine block, 

a design engineer wants to maintain the material hardness at 200 
BHN. To measure the quality of the castings being supplied by 
the foundry, the hardness of 10 castings chosen at random from 
a lot is measured, as displayed in Table 6-1.
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The analysis:
fT = total number of results – 1

= 10 – 1 = 9
Y0 = desired value = 200

the mean value is:

240 190 210 230 220
10

180 195 205 215 215

210

Y

then ST 240 200 190 200 210 200

230 200 220 200

2 2 2

2 2
1180 200

195 200 205 200 215 200

215 200

40

2

2 2 2

2

000

and S n Y Y

S S S

m

e T m

0

2 2
10 210 200 1000

4000 1000 3000

And the variance is calculated as follows:

V S f

V

V S S f

T T T

m

e T m e

4000 9 444 44

1000 1 1000

4000 1000 9

.

333 33.

These results are summarized in Table 6-2. Table 6-3 represents 
a generalized format of the ANOVA table.

Table 6-1. Hardness of cylinder block castings—Example 6-1
SAMPLE HARDNESS SAMPLE HARDNESS

1 240 6 180

2 190 7 195

3 210 8 205

4 230 9 215

5 220 10 215
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The data cannot be analyzed further, but analysis of the 
variance of the data can provide additional information about 
the data.

Let F be the ratio of total variance to the error variance. F
coupled with the degrees of freedom for VT and Ve provides a mea-
sure for the confidence in the results.

To complete the analysis, the error variance Ve is removed from 
Sm and added to Se. The new values are renamed as

S

S

m

e

pure sum of squares

pure error

This reformulation allows calculation of the percent contri-
bution, P, for the mean, Pm, or for any individual factor (PA, PB,
and so on).

Table 6-3 presents the complete format for analysis F, S, and 
P. These parameters are described below in greater detail.

Table 6-2. Analysis of variance (ANOVA) table—Example 6-1

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

Mean (m) 1 1000 1000.00

Error (e) 9 3000 333.33

Total 10 4000

Table 6-3. Generalized ANOVA table for randomized one-factor designs

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

Mean (m) fm Sm Sm / fm

Error (e) fe Se Se / fe

Total fT ST
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Variance Ratio

The variance ratio, commonly called the F statistic, is the ratio 
of variance due to the effect of a factor and variance due to the 
error term. (The F statistic is named after Sir Ronald A. Fisher.) 
This ratio is used to measure the significance of the factor under 
investigation with respect to the variance of all of the factors in-
cluded in the error term. The F value obtained in the analysis is 
compared with a value from standard F-tables for a given statisti-
cal level of significance. The tables for various significance levels 
and different degrees of freedom are available in most handbooks 
of statistics. Tables B-1 through B-5 in Appendix B provide a brief 
list of F factors for several levels of significance.

To use the tables, enter the DOF of the numerator to deter-
mine the column and the DOF of the denominator to determine 
the row. The intersection is the F value. For example, the value of 
F.10 (5, 30) from the table is 2.0492, where 5 and 30 are the DOF of 
the numerator and denominator, respectively. When the computed 
F value is less than the value determined from the F-tables at 
the selected level of significance, the factor does not contribute 
to the sum of squares within the confidence level. Computer 
software, such as [7], simplifies and speeds the determination of 
the level of significance of the computed F values.

The F values are calculated by:

F V V

F V V

m m e

e e e 1 (6-7)

and for a factor A it is given by:

A A eF V V (6-8)

Pure Sum of Squares

In Eqs. (6-4), (6-5), and (6-6), for each sum of squares there is 
a general variance term, 2, expressed as DOF × 2.

When this term is subtracted from the sum of squares expres-
sion, the remainder is called the pure sum of squares. Because 
Sm has only one DOF, it therefore contains only one 2, that is, Ve.
Thus, the pure sum of squares for Sm is:
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The portion of error variance subtracted from the sum of 
squares for Sm is added to the error term. Therefore,

e e eS S V (6-9)

If factors A, B, and C, having DOF fA, fB, and fC, are included in an 
experiment, their pure sum of squares are determined by:

(6-10)S S f V

S S f V

S S f V

S S f f f V

A A A e

B B B e

C C C e

e e A B C e (6-11)

Percent Contribution

The percent contribution for any factor is obtained by dividing 
the pure sum of squares for that factor by ST and multiplying the 
result by 100. The percent contribution is denoted by P and can 
be calculated using the following equations:

P S S

P S S

P S S

P S S

P S

m m T

A A T

B B T

C C T

e e

100

100

100

100

100 SST
(6-12)

The ANOVA Table 6-2 can now be completed as follows. Using 
Eqs. (6-7) and (6-8) gives

F V V

F V V

m m e

e e e

1000 333 33 3 00

333 33 333 33 1 00

. .

. . .

The pure sum of squares obtained using Eqs. (6-9) and (6-10) 
is shown below:

S S V nm nmm m e

2 2 2 2



140 A Primer on the Taguchi Method

And the percent contribution is calculated by using Eqs. (6-11) 
and (6-12):

P S S

P S S

m m T

e e T

100 666 67 4000 16 67

100 3333 33 4000 83 3

. .

. . 33

The completed ANOVA tables are shown in Table 6-4.
A generalized ANOVA table for one-factor randomized design 

is shown in Table 6-5.
Returning to Table 6-3, the computed value for Fm, 3.00, is 

less than the value from Table C-1 for F.1 (1,9), that is, 3.3603. 
Hence, with 90% confidence (10% risk), the castings appear to be 
similar. The apparent data spread contributes only 16.67% to the 
sample variability (sum of squares) whereas the remaining 83.33% 
variation is caused by other factors.

Table 6-5. Completed generalized ANOVA table for                          
 randomized one-factor design

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P/100

Mean (m) fm Sm Vm = Sm/fm Vm/Ve Sm – Ve S m / ST

Error (e) fe Se Ve = Se/fe — Se + Ve S e / ST

Total fT ST

Table 6-4. Completed ANOVA table—Example 6-1

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

Mean (m) 1 1000 1000.00 3.00 666.67 16.67

Error (e) 9 3000 333.33 1.00 3333.33 83.33

Total 10 4000 100.00

S S V

S S V

m m e

e e e

1000 333 33 666 67

3000 333 33 3333 33

. .

. .
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ONE-FACTOR TWO-LEVEL EXPERIMENTS (ONE-WAY ANOVA)
Example 6-2

In Example 6-1, an experiment with one response variable and 
one factor at one level was considered, the factor being the source 
of the cylinder blocks. Now consider the case with two different 
vendors supplying the castings. These two sources are assumed 
to use similar casting processes. Therefore, a new experiment is 
described with one factor, hardness of castings, from two sources, 
A1 and A2. The question to be resolved is whether the castings 
being supplied by the two vendors are statistically of the same 
quality. If not, which one is preferable? The target hardness, 200 
BHN, is unchanged.

Ten samples from each of the two castings sources were drawn 
at random and their hardness was measured. The test yielded the 
results shown in Table 6-6.

The analysis of this test proceeds as for the experiment of Ex-
ample 6-1. Note that the error sum of squares term, Se, as given 
in Eq. (6-11), contains the variation of the mean and that of factor 
A. Therefore, to separate the effect of vendors, that is, factor A,
the sum of squares term, SA, must be isolated from Se. The sum 
of squares for factor A can be calculated by:

2 2

0

1 1

1L n

A ik

k ik

T
S A Y

n n
(6-13)

where
  L = number of levels
 ni, nk = number of test samples at levels Ai and Ak, respec-

tively

Table 6-6. Measured hardness—Example 6-2
HARDNESS OF CASTINGS

FROM VENDOR A1

HARDNESS OF CASTINGS
FROM VENDOR A2

240 180 190 197 202 198

195 210 205 205 203 192

230 215 220 208 199 195

215 201
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T = sum total of all deviations from the target value
  n = total number of observations = n1 + n2 + … + nj

The T2/n in Eq. (6-13) is a term similar to Sm and is called the 
correction factor, C.F.

The expression for the total sum of squares can now be writ-
ten as:

T e m AS S S S (6-14)*

The DOF equation will be:

fT = fe + fA

The analysis:

Y Example 6 1

ST

0

2 2

200

240 200 180 200

unchanged from -

215 200

197 200 195 200

201 200

420

2

2 2

2
C.F.

66 500

3706

As C.F.T n

Y Y Y Y n

2

1 0 2 0

2

40 20 15 15

3 2 5 1
20

500

2

Using Eq. (6-13), the value of SA, the square sum for the effect 
of factor A (vendors), is obtained as:

* Taguchi considers deviation from the target more significant than that about the mean. The 
cost of quality is measured as a function of the deviations from the target. Therefore, Taguchi 
eliminates the variation about the mean from Eq. (6-14) by redefining ST as follows:

S Y Y S S

S S S

T i

i

n

e A

e T A

0

2

1

C.F.

or 
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SA = squares of sum for vendor A1

+ squares of sum for vendor A2

− C.F.

or S Y Y n Y Y n T nA iA A iA A1 1 2 20

2

0

2
2

240 200 215 200

10

197 200 201 200

10
500

1000 0 500

2

2

500

Also Se = ST – SA

= 3706 – 500
= 3206

and the DOF will be:

 fT = 20 – 1 = 19
 fA = 2 – 1 = 1
  fe = 19 – 1 = 18

Also,

and 3206 18 178.11e e eV S f

The variance ratio, F, will therefore be as shown below:

F V V

F V V

A A e

e e e

500 178 11 2 81

1

. .

To complete the ANOVA table, the pure sum of squares and 
percentage contributions are needed. The pure sum of squares is 
computed using Eq. (6-10) whereas the percentage contribution 
is calculated using Eq. (6-12).

500 1 500A A AV S f
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The pure sum of squares are:

S S f V S V

S S f V S V

A A A e A e

e e A e e e

1 500 178 11 321 87

1

. .

3206 178 11 3384 11. .

and the percentage contributions are given by:

P S S

P S S

A A T

e e T

100 321 89 100 3706 8 68

100 3384 11 100 37

. .

. 006 91 31.

The complete ANOVA table is shown in Table 6-7.
Because the degree of freedom for the numerator is 1 and that 

for the denominator is 18, from the F-tables at 0.10 level of sig-
nificance (90% confidence) we obtain F.1 (1,18) = 3.007. Because 
the computed value of the F factor is smaller than the limiting 
values obtained from the table, no significant difference between 
the two sources of the castings can be concluded. Of the observed 
variation, only 8.68% is due to the vendor and 91.32% is due to 
the error and other factors not included in the study. The range 
of the hardness data of Table 6-6 is 180 to 240 from vendor A1
and 192 to 208 from vendor A2. The difference in range suggests 
that vendor A2 may be preferred intuitively.

Confidence Intervals

The calculations shown in the ANOVA table are only estimates 
of the population parameters. These statistics are dependent 
on the size of the sample being investigated. As more castings 

Table 6-7. ANOVA table for cylinder block castings from two sources—
Example 6-2

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

Factor (A) 1 500.00 500.00 2.81 321.89 8.68

Error (e) 18 3206.00 178.00 1.00 3384.11 91.30

Total 19 3706.00 100.00
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are sampled, the precision of the estimate would be improved. 
For large samples, the estimates approach the true value of the 
parameter. In statistics, it is therefore customary to represent 
the values of a statistical parameter as a range within which it is 
likely to fall, for a given level of confidence. This range is termed  
the confidence interval (C.I.). If the estimate of the mean value 
of a set of observations is denoted by E(m), then the C.I. for the 
mean is given by:

C.I. m E m
F f f V

n

e

e

1 2,
(6-15)

where

 F  (f1, f2) = variance ratio for DOF f1 and f2 at the level of 
significance . The confidence level is (1 − )

  f1 = DOF of mean (which always equals 1)
f2 = DOF of error term
Ve = variance of error term

 ne = number of equivalent replications, given by:

To determine the C.I. for the estimated value of the mean for 
the above data, we proceed as follows:

240 190 215 215
20

197 202 195 201

205

E m

The number of experiments is 20, and there are two factors, m
and A, involved in the estimates. Therefore,

n
f f

e

A m

20 20

1 1
10

ne

Number of trials

DOF of mean always 1  +
DOF of all facctors used in the estimate
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Because F.1 (1,18) = 3.007

and V

m

e 178 11

205
3 007 178 11

10

205 7 32

197 68 212 32

.

. .

.

. , .

Therefore, it can be stated that there is a 90% probability that the true 
value of the estimated mean will lie between 197.68 and 212.32.

The confidence interval can similarly be calculated for other 
statistics.

TWO-WAY ANOVA
The one-way ANOVA discussed above included one factor 

with two levels. This section extends ANOVA to experimental 
data of two or more factors with two or more levels. The following 
examples illustrate the procedure.

Example 6-3
The wear characteristics of two brands of tires (factor B), 

“Wearwell” and “Superwear,” are to be compared. Several factors 
such as load, speed, and air temperature have significant effect 
on the useful life of tires. The problem will be limited to only one 
among these factors, that is, temperature (factor A). Let Tw and Ts
represent winter (low) and summer (high) temperatures, respec-
tively. Tire life (response characteristic) is measured in hours of 
operation at constant speed and load. The experiment design for 
this example is given in Table 6-8. This is called a two-factor two-
level experiment. It has four possible trial runs, and the results 
of each run can be interpreted as follows:

With A at A1 and B at B1, the life is = 70 hr
With A at A1 and B at B2, the life is = 75 hr
With A at A2 and B at B1, the life is = 65 hr
With A at A2 and B at B2, the life is = 60 hr

The analysis of the data follows exactly the same procedures 
presented in the previous example. In this case, the total degrees 
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of freedom, fT = n – 1 = 3. The degrees of freedom and the ANOVA 
quantities in this case become:

  n = 22 = 4
fT = n – 1 = 4 – 1 = 3

  fA = number of levels – 1 = 2 – 1 = 1
fB = types of tires – 1 = 2 – 1 = 1

fA × B  = 1 × 1 = 1
fe  = fT – fA – fB – fA × B

C.F. = correction factor = T2/n = 2702/4 = 18225.0
Y0 = target value = 0
ST = sum of squares of all results – C.F.

Y Y1

2

4

2 C.F.

   = 702 + 652 + 752 + 602 – 18225.0
   = 18350.0 – 18225.0 = 125.0

The total contribution of each factor is calculated as follows:

A1 = 70 + 75 = 145 A2 = 65 + 60 = 125
B1 = 70 + 65 = 135 B2 = 75 + 60 = 135

and S A N A N

S B N B N

S A B r

A A A

B B B

AB i j ij

j

1

2

2

2

1

2

2

2

2

1 2

1 2

C.F.

C.F.

11

2

1

2

i

C.F.

Table 6-8. Tire wear experiment—Example 6-3
TEMPERATURE

A
TIRE TYPE A1 = Tw A2 = Ts SUM

B

“Wearwell” 70 65 135

B1 Y1 Y3

“Superwear” 75 60 135

B2 Y2 Y4

Sum = 145 125 270 = Grand total
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SA × B = SAB – SA – SB

    ST = Se + SA + SB + SA × B

where
1 2
,A AN N , and so on, refer to the number of trial runs in-

cluded in the sums A1, A2, and so on. AiBj is the total experimental 
response for factor A at level i and factor B at level j whereas rij
is the number of replications (observations) for cell ij. The term 
SA×B represents the interaction sum of squares.

For the above example,

S

S

A

B

145 2 125 2 18225 0 18325 0 18225 0 100 0

135 2 135 2

2 2

2 2

. . . .

18225 0 18225 0 18225 0 0 0. . . .

Because r = 1 (one observation per cell)

SAB 70 1 75 1 65 1 60 1 18225 0 125 02 2 2 2 . .

and

SA × B = 125.0 − 100.0 − 0 = 25.0

Therefore, using Eq. (6-11), the error variation becomes,

S S S S Se T A B A B

125 100 0 25 0

Variance calculations:

V S f

V S f

V S f

V S f

A A A

B B B

A B A B A B

e e e

100 1 100

0 1 0

25 1 25

0 0   indeterminate, hence not useful

Variance Ratio

Once all of the variances are computed, the results can be ar-
ranged in tabular form, as appears in Table 6-9.

Observe that the DOF and Se of the error terms are zero, hence 
F, the ratio of the variances, cannot be computed. Thus this ex-
perimental design is not effective for studying the interaction of 
factors A and B. Additional degrees of freedom are necessary for 
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a complete analysis of the interactions and main effects. This can 
be accomplished by repeating the observations for each setup so 
that there will be an error term that will have non-zero degrees 
of freedom and variance terms.

EXPERIMENTS WITH REPLICATIONS
Example 6-4

Example 6-3 is extended to two observations per cell, as shown 
in Table 6-10. In Table 6-11, the data in each cell are replaced by 
a single value obtained by adding the two data points. The total 
of the degrees of freedom, fT, is increased:

because n = r × 22 = 2 × 4 = 8
and fT = n – 1 = 8 – 1 = 7

The degrees of freedom for other factors are as follows:

  fA = number of levels – 1 = 2 – 1 = 1
fB = types of tires – 1 = 2 – 1 = 1

fA×B = 1 × 1 = 1
fe = fT – fA – fB – fA×B = 7 – 1 – 1 – 1 = 4

and

C.F. correction factor T n2 2542 8 36720 5.

Table 6-9. ANOVA table for tire wear characteristics—Example 6-3

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

A 1 100.00 100.00

B 1 0.00 0.00

A × B 1 25.00 25.00

Error (e) 0 0.00

Total 3 125.00
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Assuming

Y0 = target value = 0
ST = sum of squares of all eight data points – C.F.

The contribution of each factor is shown below:

A1 = 142 + 152 = 294 A2 = 127 + 121 = 248
B1 = 142 + 127 = 269 B2 = 152 + 121 = 273

Table 6-10. Tire wear experiments with repetitions—Example 6-4
TEMPERATURE

A
TIRE TYPE A1 = Tw A2 = Ts

B

“Wearwell” 70, 72 65, 62

B1 Y1 Y3

“Superwear” 75, 77 60, 61

B2 Y2 Y4

Table 6-11. Tire wear experiments with repetitions—Example 6-4
TEMPERATURE

A
TIRE TYPE A1 = Tw A2 = Ts SUM

B

“Wearwell” 142 127 269

B1 Y1 Y3

“Superwear” 152 121 273

B2 Y2 Y4

Sum = 294 248 542 = Grand total

Y Y1

2

8

2

2 2 2 2 2 2 2 270 72 75 77 65 62 60 61 36720 5

C.F.

.

337028 0 36720 5

307 5

. .

.
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and S

S

S

A

B

A B

294 4 248 4 36720 5 264 5

269 4 273 4 36720 5 2 0

2 2

2 2

. .

. .

A B A B A B A B1 1

2

1 2

2

2 1

2

2 2

2

2 2

2 2 2 2

152 1

C.F.

= 142 227 121 2 36720 5

37019 36720 5 298 5

2 2
.

. .

Also S

S S S S S

A B

e T A B A B

298 5 264 5 2 32

307 5 264 5 2 32 9

. .

. . ..0

Variance calculations:

V S f

V S f

V S f

V S f

A A A

B B B

A B A B A B

e e

264 5 1 264 5

2 1 2

32 1 32

. .

ee 9 4 2 25.

Also F V V

F V V

F V V

A A e

B B e

A B A B e

264 5 2 25 117 6

2 2 25 0 89

32 2 2

. . .

. .

. 55 14 22.

Pure sum of squares:

S S f V

S S f V

A A A e

B B B e

264 5 1 2 25 262 25

2 1 2 25 0 2

. . .

. . 55

32 1 2 25 29 75S S f V

S S f f f V

A B A B A B e

e e A B A B e

. .

9 3 2 25 15 75. .

and the percentage contributions will be:

P S S

P S S

A A T

B B T

100 262 25 100 307 5 85 28

100 0 25 100 30

. . .

. 77 5 0 08

100 29 75 100 307 5 9 68

100

. .

. . .P S S

P S S

A B A B T

e e T 15 75 100 307 5 5 12. . .
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Because the number of the degrees of freedom for the nu-
merator is 1 (see Table 6-12) and that for the denominator is 4, 
from the F-tables at .05 level of significance (95% confidence) we 
obtain F.05 (1,4) = 7.7086. The computed values of variance ratios 
F for factor A and interaction A×B are greater than the limiting 
values obtained from the table. Therefore, there is a significant 
difference in the wear life of the tires under summer and winter 
conditions. The interaction term, FA×B, indicates that the influ-
ence of temperature on the two brands of tires is also significant. 
However, FB is less than the F-table factor. Thus, there is no dif-
ference between tire brands within the confidence level.

Procedures for Pooling

When the contribution of a factor is small, as for factor 
B in the above example, the sum of squares for that factor is 
combined with the error, Se. This process of disregarding the 
contribution of a selected factor and subsequently adjusting the 
contributions of the other factor is known as pooling. Pooling 
is usually accomplished by starting with the smallest sum of 
squares and continuing with the ones having successively larger 
effects. Pooling is recommended when a factor is determined to 
be insignificant by performing a test of significance against the 
error term at a desired confidence level. A general guideline for 
when to pool is obtained by comparing the error DOF with the 
total factor DOF. Taguchi recommends pooling factors until the 

Table 6-12. ANOVA table for tire wear with repetitions—Example 6-4

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

A 1 264.50 264.50 117.50 262.25 85.28

B 1 2.00 2.00 0.89 –0.25 –0.08

A × B 1 32.00 32.00 14.22 29.75 9.68

Error (e) 4 9.00 2.25 1.00 15.75 5.12

Total 7 307.50 100.00
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error DOF is approximately half the total DOF of the experiment 
([9], pp. 293-295). Approaching the matter technically, one could 
test for significance and pool all factor influences below the 90% 
confidence level. The procedure for significance testing will be 
discussed later in this chapter. For now, we will arbitrarily select 
small factor effects and pool. Consider the pooling effects of factor 
B. If the variance for this factor is pooled with the error term, 
the new error variance is computed as:

V S S f fe B e B e

2 0 9 0 1 4

2 2

. .

.

With a pooled Ve, all S  values must be modified to reflect pooling:

S S V f

S S V f

A A e A

A B A B e A B

264 50 2 20 262 30

32 0

. . .

. 2 2 1 29 8

11 0 2 2 2 15 4

. .

. . .S S V f fe e e A A B

The results of this procedure are summarized in Table 6-13, which 
makes it apparent that pooling in this particular case does not 
appreciably change the results. But, in certain cases, the process 
may significantly affect the results. No matter the effect on the 
results, insignificant factors should always be pooled.

Table 6-13. ANOVA table for tire wear with repetitions and pooling—  
Example 6-4

SOURCE
OF

VARIATION f
SUM OF 
SQUARES

VARIANCE 
(MEAN

SQUARE), 
V

VARIANCE 
RATIO,

F

PURE
SUM
OF

SQUARES, 
S’

PERCENT
CONTRIBUTION, 

P

A 1 264.50 264.50 120.20 262.30 85.30

B Pooled

A × B 1 32.00 32.00 14.50 29.80 9.69

Error (e) 5 11.00 2.20 1.00 15.40 5.01

Total 7 307.50 100.00
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It is quite evident from these considerations that the ANOVA 
procedure is cumbersome and extremely time consuming. The 
computations necessary increase tremendously as the size of the 
matrix increases. The design of the experiment and the subse-
quent analysis of the test results can be simplified using available 
software specifically made for analysis of Taguchi experimental 
designs. Most of the computations shown in this book have been 
carried out using Qualitek-4 software [7]. To further clarify the 
step-by-step procedure involved in analysis of variance, the fol-
lowing numerical example is presented.

STANDARD ANALYSIS WITH SINGLE AND MULTIPLE RUNS
Example 6-5

A Taguchi experiment was designed (Table 6-14) to investigate 
five two-level factors (A, B, C, D, and E) and two interactions (A×C
and B×C) of a certain manufacturing operation. The L8 orthogonal 
array was used to design the experiment, and the results were 
examined of one sample that was tested under each experimental 
configuration. The results are shown in Table 6-15.

Analysis Using Single Run

Level Totals and Their Averages

The factor averages at each factor level are obtained by adding 
the results of all trial conditions at the level considered and then 
dividing by the number of data points added.

A y y y y

A y y y y

1 1 2 3 4

2 5 6 7 8

4 42 50 36 45 4

173 4 43 25.

4 35 55 30 54 4

174 4 43 50

4 42 50 35 551 1 2 5 6

.

C y y y y 4

182 4 45 50

4 36 45 30 54 4

165 4 41 25

2 3 4 7 8

.

.

C y y y y
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Similarly
B B

B B

D D

D D

E

1 1

2 2

1 1

2 2

1

143 35 75

204 51 00

187 46 75

160 40 00

.

.

.

.

172 43 00

175 43 75

1

2 2

E

E E

.

.

Table 6-14. Factors and their levels—Example 6-5
COLUMN FACTOR NAMES LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Factor A A1 A2

2 Factor C C1 C2

3 Interaction A × C N/A

4 Factor B B1 B2

5 Factor D D1 D2

6 Interaction B × C N/A

7 Factor E E1 E2

Objective: Determine best design parameters.

Characteristic: Smaller is better.
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and A C y y y y

A C y y y y

1 1 2 7 8

2 3 4 5 6

4 176 4 44 00

4 171 4

.

42 75

4 176 4 44 00
1 1 4 5 8

2 2 3 6 7

.

.B C y y y y

B C y y y y 4 171 4 42 75.

The results are shown in Table 6-16, and the main effects are 
plotted in Figure 6-1.

Ignoring interaction effects and assuming the “smaller is bet-
ter” characteristic is desired, the optimum condition becomes:

 A1 C2 B1 D2 E1

Computation of Interaction

Interaction effects are always mixed with the main effects 
of the factors assigned to the column designated for interaction. 
The relative significance of the interaction effects is obtained by 
ANOVA, just as are the relative significance of factor effects. To 
determine whether two factors, A and C, interact, the following 
calculations are performed.

Level totals and their averages for A and C:

A C y y

A C y y

1 1 1 2

1 2 3 4

2 42 50 2 92 2 46 0

2 36 45 2 81 2

.

440 5

2 35 55 2 90 2 45 0

2 30 54 2

2 1 5 6

2 2 7 8

.

.A C y y

A C y y 84 2 42 0.

Level totals and their averages for B and C:

B C y y

B C y y

1 1 1 5

1 2 3 7

2 42 35 2 77 2 38 5

2 36 30 2 66 2

.

333 0

2 50 55 2 105 2 52 5

2 45 54

2 1 2 6

2 2 4 8

.

.B C y y

B C y y 22 99 2 49 5.
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These items represent the combined effects of the factors on the 
results. For example, A1C1 represents the effect of factor A at level 
1 and C at level 1 together.

These results are plotted in Figure 6-2 by selecting factor C,
which is common to both pairs of interactions, arbitrarily to rep-
resent the x-axis. The angle between the two lines in this interac-
tion plot indicates the strength of presence of interaction (need 
not intersect). Note that lines B1 and B2 appear almost parallel; 
hence, B and C interact slightly. Note also that A1 and A2 intersect; 
thus, A and C interact.

The minor interaction of B×C is ignored, but interaction 
A×C is included in the optimum condition. For the “smaller is 

Table 6-16. Average effects—Example 6-5
COLUMN FACTOR NAMES LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

1 Factor A 43.25 43.50 0.25

2 Factor C 45.50 41.25 –4.25

3 Interaction A × C 44.00 42.75 –1.25

4 Factor B 35.75 51.00 15.25

5 Factor D 46.75 40.00 –6.75

6 Interaction B × C 44.00 42.75 –1.25

7 Factor E 43.00 43.75 0.75

Figure 6-1. Main effects—Example 6-5

Re
sp

on
se

Factors
A1 B1C1 D1 E1A2 B2C2 D2 E2

43.25 43.0 43.7543.5

45.0

41.25

35.75

51

46.75

40
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better” situation, A1C2 (40.5) produces the lowest average value. 
Therefore, A1C2 is must be included in the optimum condition. It 
so happens that A1C2 was already included in the optimum condi-
tion, A1 C2 B1 D2 E1, based on the main effects alone.

Analysis of Variance (ANOVA)

ANOVA establishes the relative significance of the individual 
factors and the interaction effects. The steps are as follows:
Step 1. Total of all results:

T = 42 + 50 + 36 + 45 + 35 + 55 + 30 + 54 = 347
Step 2. Correction Factor:

C.F. T n2 2347 8 15051 125.

Note: n = total number of experiments, 8.
Step 3. Total sum of squares:

S yT i

i

2

1

8

2 2 2 242 50 36 54 15051 125

599 88

C.F.

.

.

Figure 6-2. Interaction A × C and B × C—Example 6-5

Re
sp

on
se

Factors
C1 C1C2 C2

38.50

33.0

52.50

49.50

45.0 42.0

46.0

40.5

B1

A1

B2

A2
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Step 4. Factor sum of squares:

S A N A N

S B N

A A A

B B

1

2

2

2

2 2

1

2

1 2

1

173 4 174 4 15051 125 0 125

C.F.

. .

B N

S C N C N

B

C C C

2

2

2 2

1

2

2

2

2

1

143 4 204 4 15051 125 465 125

C.F.

. .

22

1 2

182 4 165 4 15051 125 36 1252 2

1

2

2

2

C.F.

C.F.

. .

S D N D ND D D

1187 4 160 4 15051 125 91 125

172 4 1

2 2

1

2

2

2

2

1 2

. .

S E N E NE E E C.F.

775 4 15051 125 1 1252

1

2

2

2

1 2

. .

S A C N A C NA C A C A C
C.FF.

176 4 171 4 15051 125 3 1252 2

1

2

2

2

1

. .

S B C N B CB C B C
NN

B C
2

176 4 171 4 15051 125 3 1252 2

C.F.

. .

Alternative Formula for Two-Level Factors

In the case of two-level factors, the sums of squares can be 
computed using the following formulas:

S
A A

N N

S
B B

N N

A

A A

B

B

1 2

2 2

1 2

2

1 2

1

173 174

4 4
0 125.

BB

C

C C

S
C C

N N

2

1 2

143 204

4 4
465 125

182 165

2

1 2

2

.

2

4 4
36 125.
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S
D D

N N

S
E E

N

D

D D

E

E

1 2

2 2

1 2

2

1 2

1

187 160

4 4
91 125.

NN

S
A C A C

N N

E

A C

A C

2

1

172 175

4 4
1 125

2

1 2

2

.

AA C

B C

B C

S
B C B C

N

2

176 171

4 4
3 125

2

1 2

2

.

11 2

176 171

4 4
3 125

2

N

S S S S S S S S

B C

e T A B C D E A

.

CC B CS

599 88
0 125 465 125 36 125 91 125

91 125 3 125
.

. . . .
. . 33 125

599 88 599 88 0

.

. .

where

 NA1
= total number of experiments where factor A1 is present

 NB1
= total number of experiments where factor B1 is present

 A1 = sum of results (Yi) where factor A1 is present
 B1 = sum of results (Yi) where factor B1 is present

Step 5. Total and factor degrees of freedom (DOF):

DOF total = number of test runs minus 1

or fT = n – 1 = 8 – 1 = 7

DOF of each factor is 1 less than the number of levels:

fA = (number of levels of factor A) – 1
= 2 – 1 = 1

fB = (number of levels of factor B) – 1
= 2 – 1 = 1

fC = (number of levels of factor C) – 1
= 2 – 1 = 1
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fD = (number of levels of factor D) – 1
= 2 – 1 = 1

fE = (number of levels of factor E) – 1
= 2 – 1 = 1

Also,

f(A × C) = fA × fC

= 1 × 1 = 1
f(B × C) = fB × fC

= 1 × 1 = 1

DOF of the error term in this example:

f f f f f f f f fe T A B C D E A C B C

7 7 0

With the error degrees of freedom equal to zero, fe = 0, 
information regarding the error sum of squares cannot be de-
termined. In addition, F ratios for factors cannot be calculated 
because the calculations involve fe. To complete the calculations, 
smaller factorial effects are added together (pooled) to form a 
new non-zero estimate of the error term. This is discussed in 
the following section.

Step 6. Mean square (variance):

V S f

V S f

V S f

A A A

B B B

C C C

0 125 1 0 125

465 125 1 465 125

36 125

. .

. .

. 11 36 125

91 125 1 91 125

1 125 1 1 125

.

. .

. .

V S f

V S f

V S f

D D D

E E E

e e e 0 0 indeterminate

As the variance of error term (Ve) is zero, the variance ratio 
and pure sum of squares (S ) cannot be calculated. In this case, 
the percentage contributions are first calculated using sums of 
squares. Then, if there are insignificant factors, pool them and 
recalculate percentages using the pure sums of squares.
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Step 7. Percentage contribution:
P S S

P S S

P S S

A A T

B B T

C C T

0 125 599 88 0 02

465 125 599 88 77 54

. . .

. . .

36 125 599 88 6 02

91 125 599 88 15 20

1 125

. . .

. . .

.

P S S

P S S

D D T

E E T 5599 88 0 19

3 125 599 88 0 52

3 125 5

. .

. . .

.

P S S

P S S

A C A C T

B C B C T 999 88 0 52. .

and Pe cannot be calculated because Ve = 0.
The results of the analysis of variance are summarized in 

Table 6-17.

Pooling
Note that in Step 7 the effects of factors A and E and interac-

tions B×C and A×C are small, totaling slightly more than 1% 
(1.2%). These factors are pooled to obtain new, non-zero estimates 
of Se and fe.
Sum of squares of error term:

Let: Se = SA + SE + SA × C + SB × C

then 599.9 592.4 7.5e T B C DS S S S S

Table 6-17. ANOVA table—Example 6-5
COLUMN FACTOR NAMES f S V F P

1 Factor A 1 0.125 0.125 0.02

2 Factor C 1 36.125 36.125 6.02

3 Interaction A × C 1 3.125 3.125 0.52

4 Factor B 1 465.125 465.125 77.54

5 Factor D 1 91.125 92.125 15.20

6 Interaction B × C 1 3.125 3.125 0.52

7 Factor E 1 1.125 1.125 0.19

All other/error 0 0 0

Total 7 599.880 100.00%
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Degree of freedom of error term:

7 3 4

e T B C Df f f f f

Variance of error term:

7.5 4 1.875e e eV S f

Factor F ratios, for significant factors:

F V V

F V V

F V

C C e

B B e

D

36 125 1 875 19 267

465 125 1 875 248 067

. . .

. . .

DD eV 91 125 1 875 48 600. . .

Pure sum of squares, S , for significant factors:

S S V f

S S V f

C C e C

B B e B

36 125 1 875 1 34 25

465 12

. . .

. 55 1 875 1 463 25

91 125 1 875 1 89 25

. .

. . .

S S V fD D e D

Note that in the ANOVA in Table 6-18, the pure sum of squares, 
S , is not shown.

Percentage contribution:

P S S

P S S

P

C C T

B B T

D

34 25 599 88 5 71

463 25 599 88 77 22

. . . %

. . . %

SS S

P P P P

D T

e C B D

89 25 599 88 14 88

100 100 5 71 77 22

. . . %

% % . . 14 88

100 97 81 2 19

.

% . . %

The ANOVA terms that are modified after pooling are shown in 
Table 6-18.

Taguchi’s guideline for pooling ([9], pp. 293-295) requires 
starting with the smallest main effect and successively including 
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larger effects until the total pooled DOF equals approximately half 
of the total DOF. The larger DOF for the error term, as a result of 
pooling, increases the confidence level of the significant factors.

Note that as small factor effects are pooled, the percentage 
contributions and the confidence level of the remaining factors 
decrease (PC = 5.71 versus PC = 6.02). By pooling, the error term 
is increased and, in comparison, the other factors appear less in-
fluential. The greater the number of factors pooled, the worse the 
unpooled factor effects look. Then we must consider why column 
effects are pooled.

Error variance represents the degree of inter-experiment error 
when the DOF of the error term is sufficiently large. When the 
error DOF is small or zero, which is the case when all columns 
of the OA are occupied and trials are not repeated, small column 
effects are successively pooled to form a larger error term (this 
is known as a pooling-up strategy). The factors and interactions 
that are now significant, in comparison with the larger magnitude 
of the error term, are now influential. Taguchi prefers this strat-
egy as it tends to avoid the mistake (alpha mistake) of ignoring 
helpful factors.

A large error DOF naturally results when trial conditions are 
repeated and standard analysis is performed. When the error DOF 
is large, pooling may not be necessary. Therefore, one could repeat 

Table 6-18. Pooled ANOVA—Example 6-5
COLUMN FACTOR NAMES f S V F P

1 Factor A (1) (0.13) Pooled

2 Factor C 1 36.125 36.125 19.267 5.71

3 Interaction A × C (1) (3.125) Pooled

4 Factor B 1 465.125 265.125 248.067 77.22

5 Factor D 1 91.125 92.125 48.600 14.88

6 Interaction B × C (1) (3.125) Pooled

7 Factor E (1) (1.125) Pooled

All other/error 4 7.500 1.88 2.19

Total 7 599.880 100.00%



Analysis of Variance (ANOVA) 165

the experiment and avoid pooling, but to repeat all trial conditions 
just for information on the error term may not be practical.

A sure way to determine if a factor or interaction effect should 
be pooled is to perform a test of significance (1 – confidence level). 
But what level of confidence do you work with? No clear guidelines 
are established. Generally, factors are pooled if they do not pass 
the test of significance at the confidence level assumed for the 
experiment. A factor is considered significant if its experimental 
F-ratio exceeds the standard table value at a confidence level. A 
common practice is to subjectively assume a confidence level be-
tween 85% and 99%, with 90% or 95% being a popular selection. 
Consider factor C in Example 6-5, which has 5.7% influence (19.267 
F-ratio). When tested for significance, this factor shows more than 
99% confidence level and thus should not be pooled.

From the ANOVA table

FC = 19.267

From the F-table, find the F value at

n1 = DOF of factor C = 1
n2 = DOF of error term = 4

at a confidence level (say, the 99% confidence level).

F = 21.198 (from Table C-4)

As FC from the experiment (19.267) is smaller than the F-table 
value (21.198), factor C should be pooled.

SUMMARY RESULTS

Description of the factor = Factor C
Column the factor is assigned to = 2
Variance ratio for this factor = 19.267
DOF of the factor = 1
DOF of error term, fe = 4
Confidence level % = 99

Based on the level of confidence desired (99%), the following 
is recommended:

“Pool this factor”
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The revised values are calculated as shown below:

S S S S

f f f f

V S

e T B D

e T B D

e

599 9 556 25 43 625

7 2 5

. . .

ee e

B B e

D D e

f

F V V

F V V

43 625 5 8 725

465 125 8 725 53 309

91 12

. .

. . .

. 55 8 725 10 444

465 125 8 725 1 456 40

. .

. . .S S V f

S S

B B e B

D DD e D

B B T

V f

P S S

91 125 8 725 1 82 40

456 40 100 599

. . .

. .888 76 08

82 40 100 599 88 13 74

100 1

.

. . .

%

P S S

P P P

D D T

e B D 000 76 08 13 74 10 18% . . .

Confidence Interval of Factor Effect

The confidence interval of estimates of the main effect is cal-
culated using the following expression:

C.I. F n V Ne e1 2,

where

 F (1,n2) = F value from the F-table at a required confidence 
level and at DOF 1 and error DOF n2

Ve = variance of error term (from ANOVA)
Ne = effective number of replications

Thus for factor C at level C1, the C.I. is calculated by first deter-
mining the F factor:

  n2 = 4
Ne = 8/(1+1) = 4

 F (1,4) = 7.7086 at 95% confidence level

Total number of results or number of S/N ratios

DOF of meaan =1, always  + DOF of all factors
        included in thee estimate of the mean
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then   C.I. = ±1.9034 at 95% confidence level
because   C1 = 45.50 (Table 6-16)
expected value of C1 = 45.50 ± 1.9034

SUMMARY RESULTS

Based on:

F value from the table (at a confidence level) = 7.7086
Error variance, Ve = 1.88
Number of effective replications = 4

The confidence interval C.I. is calculated as follows:

C.I. F n V Ne e1 2,

C.I. represents the boundaries of the expected performance in 
the optimum condition at a confidence level used for the F value 
from the standard table.

Confidence interval (C.I.) = ±1.9034

Estimated Result at Optimum Condition

The performance at the optimum condition is estimated only 
from the significant factors. This practice keeps the predicted 
performance conservative. Therefore, the pooled factors are not 
included in the estimate.

Grand average of performance: T 347 8 43 375.

As factors B, C, and D are considered significant, the perfor-
mance at the optimum condition will be estimated using only 
these three factors.

T B T D T C T1 2 2

43 375 35 75 43 375 40 43 375. . . . 441 25 43 375

30 25

. .

.

Note that the optimum condition for the “smaller is better” quality 
characteristic is B1 C2 D2. The average values at these conditions 
were previously calculated as summarized in Table 6-19.
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Confidence Interval of the Result at the Optimum Condition

The expression for computing the confidence interval, for 
performance at the optimum condition, is calculated in the same 
way as are the factor effects.

C.I. F n V Ne e1 2,

where

 F (1,n2) = F value from the F-table at a required confidence 
level and at DOF 1 and error DOF n2

Ve = variance of error term (from ANOVA)
Ne = effective number of replications

Three factors, B1, C2, and D2, are included in calculating the 
estimate of the performance at the optimum condition. There-
fore, the effective number of replications, the F value, and the 
confidence intervals are calculated as shown below. A confidence 
level of 85% to 99% is the normal range of selection for common 
industrial experiments. A 90% confidence level is arbitrarily se-
lected for the following calculations.

Table 6-19. Estimate of performance at optimum condition—Example 6-5
FACTOR

DESCRIPTION
LEVEL

DESCRIPTION LEVEL CONTRIBUTION

Factor C C2 2 –2.125

Factor B B1 1 –7.6250

Factor D D2 2 –3.3750

Contribution from all factors (total) –13.125

Current grand average of performance 43.375

Expected result at optimum condition 30.250

Total number of results or number of S/N ratios

DOF of meaan =1, always  + DOF of all factors
        included in thee estimate of the mean
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n2 = 4
 Ne = 8/(1+3) = 2
 F (1,4) = 4.5448 at the 90% confidence level
 Ve = 1.88
 C.I. = ±2.067 at the 90% confidence level

Therefore, the result at the optimum condition is 22.0 ± 2.067 at 
the 90% confidence level.

SUMMARY RESULTS

Expression: C.I. F n V Ne e1 2,

where

F (n1, n2) = computed value of F with n1 = 1, n2 = error DOF, 
at a desired confidence level

  Ve = error variance
Ne = effective number of replications

Based on F = 4.5448, n1 = 1 and n2 = 4, Ve = 1.88, and Ne = 2:

The confidence interval (C.I.) = ±2.067

which is the variation of the estimated result at the optimum, that 
is, the mean result (m) lies between (m + C.I.) and (m − C.I.) at 
90% confidence level.

The confidence interval formula assumes a sufficiently large 
number of data points so that the sample approximates the popu-
lation characteristics. With a “small” sample, its characteristics 
may deviate from the population. When the sample is small, that 
is, only a finite number of confirmation tests is planned, the C.I. 
of the expected result is expressed as:

C.I. F n n V N N N Ne e r e r1 2,

where

F (n1, n2) = computed value of F at a desired confidence level 
with n1 = 1, n2 = error DOF

Ve = error variance
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Ne = effective number of replications
Nr = number of repetitions

Based on:

n1 = 1 n3 = 4 Ve = 1.88
Ne = 2 Nr = 3

F.1 (1,4) = 4.5448 at the 90% confidence level

then C.I. = ±2.668 at the 90% confidence level. This is a wider 
interval than previously calculated based on a large number of 
repetitions.

Analysis with Multiple Runs

Assume the trial runs of the experiment were each repeated 
three times and that the average result of each trial as shown Table 
6-20 is the same as that for a single trial in Table 6-15. The analy-
sis takes a slightly different form. Because the averages of these 
hypothetical results were kept the same, the main effects remain 
unchanged, as shown in Tables 6-21 and 6-16. However, the results 
of ANOVA (Table 6-22) are significantly different from the corre-
sponding result of the single run (Table 6-18).

Computation for ANOVA:

DOF = total number of results – 1
   = number of trials × number of repetitions – 1
   = 8 × 3 – 1 = 23

Sample calculations using factor B:

1 38.0 42.0 46.0 38.0 36.0 34.0

30.0 35.0 40.0 40.0 30.0 20.0 429

B

Note that the trial condition for calculating B1 is (1, 3, 5, and 7).

2 45.0 50.0 55.0 55.0 45.0 35.0

65.0 55.0 45.0 58.0 54.0 50.0 612

B

Using the sum of squares formula for a two-level factor,
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Table 6-20. Results with three repetitions—Example 6-5
REPETITION
TRIAL

R1 R2 R3 R4 R5 R6

AVERAGE

1 38.00 42.00 46.00 42.00

2 45.00 50.00 55.00 50.00

3 38.00 36.00 34.00 36.00

4 55.00 45.00 35.00 45.00

5 30.00 35.00 40.00 35.00

6 65.00 55.00 45.00 55.00

7 40.00 30.00 20.00 30.00

8 58.00 54.00 50.00 54.00

Table 6-21. Main effects—Example 6-5
COLUMN FACTOR NAMES LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

1 Factor A 43.25 43.50 0.25

2 Factor C 45.50 41.25 –4.25

3 Interaction A × C 44.00 42.75 –1.25

4 Factor B 35.75 51.00 15.25

5 Factor D 46.75 40.00 –6.75

6 Interaction B × C 44.00 42.75 –1.25

7 Factor E 43.00 43.75 0.75

Table 6-22. Pooled ANOVA—Example 6-5
COLUMN FACTOR NAMES f S V F P

1 Factor A (1) (0.38) Pooled

2 Factor C 1 108.375 108.375 2.728 2.67

3 Interaction A × C (1) (9.380) Pooled

4 Factor B 1 1395.375 1395.375 35.126 52.72

5 Factor D 1 273.375 273.375 6.882 9.09

6 Interaction B × C (1) (9.380) Pooled

7 Factor E (1) (3.380) Pooled

All other/error 20 794.500 39.72 35.53

Total 23 2571.630 100.00%
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S
B B

N N

V S f

B

B B

B B B

1 2

2 2

1 2

429 612

24
1395 375

1395 375

.

. 11 1395 375

1395 375 39 72 35 126

1395 3

.

. . .

.

F V V

S S V f

B B e

B B e B 775 39 72 1355 65

100 100 1355 655 2571 63 52 70

. .

. . . %P S SB B T

The ANOVA and the performance at the optimum condition 
are as shown in Tables 6-22 and 6-23, respectively. 

When trial runs are repeated, ANOVA produces different re-
sults with larger error DOF and thus a higher level of confidence 
in the estimate optimum performance and the factor influences. 
ANOVA results from multiple repetitions should always be pre-
ferred as this will yield the robust design and reproducible per-
formance estimate. For this reason, repetition is highly desirable. 
But because repeating trial runs may be expensive, it must be 
weighed against the need for robustness.

APPLICATION OF S/N RATIO

The change in the quality characteristics of a product under 
investigation in response to a factor introduced in the experimen-
tal design is the “signal” of the desired effect. However, when an 
experiment is conducted, there are numerous external and internal 

Table 6-23. Estimate of performance at optimum condition—Example 6-5
FACTOR

DESCRIPTION
LEVEL

DESCRIPTION LEVEL CONTRIBUTION

Factor C C2 2 –2.1250

Factor B B1 1 –7.6250

Factor D D2 2 –3.3750

Contribution from all factors (total) –13.125

Current grand average of performance 43.375

Expected result at optimum condition 30.250
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factors not designed into the experiment that influence the out-
come. These uncontrollable factors are called the noise factors, and 
their effect on the outcome of the quality characteristic under test 
is termed “noise.” The signal-to-noise ratio (S/N ratio) measures 
the sensitivity of the quality characteristic being investigated in 
a controlled manner to those influencing factors (noise factors) 
not under control. The concept of S/N originated in the electri-
cal engineering field. Taguchi effectively applied this concept to 
establish the optimum condition from the experiments.

The aim of any experiment is always to determine the highest 
possible S/N ratio for the result. A high value of S/N implies that 
the signal is much higher than the random effects of the noise fac-
tors. Product design or process operation consistent with highest 
S/N always yields the optimum quality with minimum variance.

From the quality point of view, there are three typical catego-
ries of quality characteristics:

1. Smaller is better; for example, minimum shrinkage in a 
cast iron cylinder block casting.

2. Nominal is best; for example, dimension of a part consis-
tently achieved with modest variance.

3. Bigger is better; for example, maximum expected life of a 
component.

The S/N analysis is designed to measure quality characteristics.

Conversion of Results into S/N Ratios

The conversion of a set of observations into a single number, 
the S/N ratio, is performed in two steps. First, the mean square 
deviation (MSD) of the set is calculated. Second, the S/N ratio is 
computed from the MSD by the equation,

S N MSD10 10log (6-16)

Note that for the S/N to be large, the MSD must have a value 
that is small.

The smaller is better quality characteristic:

MSD Y Y Y NN1

2

2

2 2 (6-17)
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The nominal is the best quality characteristic, Y0 = nominal 
or target value:

MSD Y Y Y Y Y Y NN1 0

2

2 0

2

0

2 (6-18)

The bigger is better quality characteristic:

MSD 1 1 11

2

2

2 2Y Y Y NN (6-19)

The MSD is a statistical quantity that reflects the deviation from 
the target value. The expressions for MSD are different for differ-
ent quality characteristics. For the nominal is best characteristic, 
the standard definition of MSD is used. For the other two charac-
teristics, the definition is slightly modified. For smaller is better, 
the unstated target value is zero. For larger is better, the inverse 
of each large value becomes a small value and, again, the unstated 
target is zero. Thus, for all three MSD expressions, the smallest 
magnitude of MSD is being sought. In turn, this yields the greatest 
discrimination between controlled and uncontrolled factors. This 
is Taguchi’s measure for robust product or process design.

Alternate forms of definitions of the S/N ratios exist ([6], pp. 
172-173), particularly for the nominal is best characteristic. The 
definition in terms of MSD is preferred as it is consistent with 
Taguchi’s objective of reducing variation around the target. Con-
version to S/N ratio can be viewed as a scale transformation for 
convenience of better data manipulation.

Advantage of S/N Ratio Over Average

To analyze the results of experiments involving multiple runs, 
use of the S/N ratio over standard analysis (use average of results) 
is preferred. Analysis using the S/N ratio will offer the following 
advantages:

1. It provides a guidance to selection of the optimum level 
based on the least variation around the target and also on 
the average value closest to the target.

2. It offers objective comparison of two sets of experimental 
data with respect to variation around the target and the 
deviation of the average from the target value.
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3. Because S/N represents results transformed into a logarith-
mic scale that linearizes any nonlinear behavior, if pres-
ent, the assumption of linearity for prediction of optimum 
performance is validated. 

To examine how the S/N ratio is used in analysis, consider the fol-
lowing two sets of observations, which have a target value of 75:

Observation A: 55 58 60 63 65 Mean = 60.2
Deviation of mean from target = (75 − 60.2) 

= 14.8
Observation B: 50 60 75 90 100 Average = 75.00
Deviation of mean from target = (75 − 75)

= 0.0

These two sets of observations may have come from the two dis-
tributions shown in Figure 6-3. Observe that set B has an average 

Target value

X = 60.2
S/N = –23.05

X = 75
S/N = –25.82

A B

6

4

2

0 20 40 60 80 100 120

Figure 6-3. Comparison of two distributions
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value that equals the target value, but it has a wide spread around 
it. On the other hand, for set A, the spread around its average is 
smaller, but the average itself is quite far from the target. Which 
one of the two is better? Based on average value, the product shown 
by observation B appears to be better. Based on consistency, prod-
uct A is better. How can one credit A for less variation? How does 
one compare the distances of the averages from the target? Surely, 
comparing the averages is one method. Use of the S/N ratio offers 
an objective way to look at the two characteristics together.

Computation of S/N Ratio

Consider the first of the two sets of observations shown above, 
that is, set A:  55  58  60  63  65.

Case 1. Nominal is best.
Using Eq. (6-18), and with the target value of 75,

2 2 2

2 2

55 75 58 75 60 75
MSD 5

63 75 65 75

400 289 225 144 100 5

1158 5

231.6

therefore,

S N MSD10

10 231 6

23 65

log

log .

.

Case 2. Smaller is better.
Using Eq. (6-17),

MSD 55 58 60 63 65 5

3025 3364 3600 3969 4425 5

181

2 2 2 2 2

883 5

3636 6.
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and

Case 3. Bigger is better.
Using Eq. (6-19),

MSD 1 55 1 58 1 60 1 63 1 65 5

1 3025 1 3364 1 3600 1 3969 1 4

2 2 2 2 2

4425 5

3 305 2 972 2 777 2 519 2 366 10 5

13 939 10

4. . . . .

. 44 5

0002787.

therefore,

S N 10 0002787

35 548

log .

.

The three S/N ratios computed for data sets A and B under the 
three different quality characteristics are shown in Table 6-24. 
The columns N, S, and B, under the heading “S/N ratios,” are for 
nominal, smaller, and bigger characteristics, respectively.

Now select the best data set on the basis of minimum varia-
tion. By definition, lower deviation is indicated by a higher value 
of the S/N ratio (regardless of the characteristics of quality). If the 
nominal is best characteristic applies, then using column N, the 
S/N ratio for A is −23.65 and for B is −25.32. Because −23.65 is 
greater than −25.32, set A has less variation than set B, although 
set B has an average value equal to the desired target value.

Similarly, set A is selected for the smaller is better character-
istic, and B is selected for the bigger is better characteristic.

S N 10log 3636.6

35.607

Table 6-24. S/N ratios for three quality characteristics
S/N RATIOS

OBSERVATIONS AVERAGE N S B

Set A:  55  58  60  63  65 60.2 –23.65 –35.60 35.54

Set B:  50  60  75  90  100 75.0 –25.32 –37.76 36.65
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Effect of S/N Ratio on the Analysis

Use of the S/N ratio of the results, instead of the average val-
ues, introduces some minor changes in the analysis.

• Degrees of freedom of the entire experiment is reduced.

DOF with S/N ratio = number of trial conditions − 1 (that is, 
number of repetitions is reduced to 1).

Recall that the DOF in the case of the standard analysis is:

DOF = (number of trials × number of repetitions) − 1

The S/N ratio calculation is based on data from all observations 
of a trial condition. The set of S/N ratios can then be considered 
as trial results without repetitions. Hence the DOF, in the case of 
S/N, is the number of trials − 1. The rest of the analysis follows 
the standard procedure.

• S/N must be converted back to meaningful terms. When 
the S/N ratio is used, the results of the analysis, such as 
estimated performance from the main effects or confidence 
interval, are expressed in terms of S/N. To express the 
analysis in terms of the experimental result, the ratio must 
be converted back to the original units of measurement.

To see the specific differences in the analysis using the S/N 
ratio, let us compare the two analyses of the same observations 
for the cam-lifter noise study shown in Table 6-25(a) (standard 
analysis) and in Table 6-25(b) (S/N ratio analysis). In this study, the 
three factors (spring rate, cam profile, and weight of the push rod), 
each at two levels, were investigated. The L4 OA defined the four 
trial conditions. At each of the four trial conditions, three observa-
tions (in some noise scale of 0 to 60) were recorded. The results 
were then analyzed both ways, as shown in these two tables.

A subtable “Results” of the standard analysis [Table 6-25(a)] 
presents the average of the three repetitions for each trial run at 
the extreme right-hand column. The averages are used in calcu-
lating the main effects. The values shown in the subtable titled 
“Main effects” have the same units as the original observations. 
Similarly, the expected value at the optimum condition, 30.5, 
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Table 6-25(a). Cam lifter noise study—Standard analysis

 COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

 1 Spring rate Current Proposed

 2 Cam profile Type 1 Type 2

 3 Wt. of push rod Lighter Heavier

Individual Results and Their Average

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       AVERAGE

 1 23.00 30.00 37.00    30.00

 2 35.00 40.00 45.00    40.00

 3 50.00 30.00 40.00    40.00

 4 45.00 48.00 51.00    48.00

Main Effects      

 COLUMN FACTORS LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Spring rate 35.00 44.00 9.00 00.00 00.00

 2 Cam profile 35.00 44.00 9.00 00.00 00.00

 3 Wt. of push rod 39.00 40.00 1.00 00.00 00.00

ANOVA Table      

 SUM OF   
 COLUMN FACTORS DOF SQUARES VARIANCE F PERCENT

 1 Spring rate 1 243.00 243.00 5.93 23.63

 2 Cam profile 1 243.00 243.00 5.93 23.63

 3 Wt. of push rod (1) (3.00)                POOLED 

All other/error 9 369.00 41.00 52.76

Total:  11 855.00   100.00

Estimate of Optimum Condition of Design/Process:
For Smaller is Better Characteristic   

FACTOR LEVEL
 DESCRIPTION DESCRIPTION LEVEL CONTRIBUTION

 Spring rate Current 1 –4.50

 Cam profile Type 1 1 –4.50

Contribution from all factors (total) –9.00
Current grand average of performance 39.50
Expected result at optimum condition 30.50
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 COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

 1 Spring rate Current Proposed

 2 Cam profile Type 1 Type 2

 3 Wt. of push rod Lighter Heavier

Individual Results and S/N Ratios

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       S/N

 1 23.00 30.00 37.00    –29.70

 2 35.00 40.00 45.00    –32.09

 3 50.00 30.00 40.00    –32.22

 4 45.00 48.00 51.00    –33.64

Main Effects      

 COLUMN FACTORS LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Spring rate –30.9 –32.93 –2.04 00.00 00.00

 2 Cam profile –30.96 –32.86 –1.91 00.00 00.00

 3 Wt. of push rod –31.67 –32.16 –0.49 00.00 00.00

ANOVA Table      

 SUM OF   
 COLUMN FACTORS DOF SQUARES VARIANCE F PERCENT

 1 Spring rate 1 4.141 4.141 17.61 48.79

 2 Cam profile 1 3.629 3.629 15.43 42.39

 3 Wt. of push rod (1) (0.24)                POOLED 

All other/error 1 0.24 0.24 8.82

Total: 3 8.01   100.00

Estimate of Optimum Condition of Design/Process:
For Smaller is Better Characteristic   

FACTOR LEVEL
 DESCRIPTION DESCRIPTION LEVEL CONTRIBUTION

 Spring rate Current 1    1.0175

 Cam profile Type 1 1    0.9525

Contribution from all factors (total)    1.9699
Current grand average of performance –31.9125
Expected result at optimum condition –29.9425

Table 6-25(b). Cam lifter noise study—S/N analysis
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has the same units as the original recorded data. The degrees of 
freedom for the experiment (DOF column in ANOVA table) is 11 
(4 × 3 − 1).

Comparing the standard analysis with the analysis using the 
S/N ratio [Table 6-25(b)], note that the average value of the re-
sults is replaced by the S/N ratio. The S/N ratios are then used to 
compute the main effects as well as the estimated performance at 
the optimum condition. Notice also that the degrees of freedom 
for the experiment is 3. This difference in DOF produces a big 
difference in the way the two analyses compute ANOVA, that is, 
the percentage contribution of the factors involved (for spring 
rate, the value is 23.6% from standard analysis as compared with 
48.79% from S/N analysis). Likewise, the other factors will have 
different magnitudes of contribution in the two methods.

In estimating the result at the optimum condition, only the 
factors that will have significant contributions are included. In this 
case, both methods selected level 1 of factors in columns 1 (spring 
rate) and 2 (cam profile). This may not always be true.

When the S/N ratio is used, the estimated result can be con-
verted back to the scale of units of the original observations. For 
example, the expected result in terms of S/N ratio is −29.9425 
[Table 6-25(b), bottom line]. This is equivalent to an average 
performance, Y , which is calculated as follows:

Because

S N 10log MSD

and

MSD for smaller is better

expected

Y Y N

Y

N1

2 2

2

Therefore,

MSD S/N10 10 986 847410 29 9425 10( ) / ( . ) / .

or

Yexpected MSD
1 2 1 2

986 8474 31 41
/ /

. .

which is comparable to 30.5 shown at the bottom of Table 6-25(a).
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When to Use S/N Ratio for Analysis

Whenever an experiment involves repeated (two or more) obser-
vations at each of the trial conditions, the S/N ratio has been found 
to provide a practical way to measure and control the combined 
influence of deviation of the population mean from the target and 
the variation around the mean. In standard analysis, the mean and 
the variation around the mean are treated separately by a main 
effect study and ANOVA, respectively. The analysis of the Taguchi 
experiments using S/N ratios for the observed results can be con-
veniently performed by using computer software such as [7].

EXERCISES

6-1. In an experiment involving four factors (A, B, C, and D) and 
one interaction (A × B), each trial condition is repeated three 
times and the observations recorded as shown in Table 6-26. 
Determine the total sum of squares and the sum of squares 
for factor A.

6-2. Assuming the “bigger is better” quality characteristic, trans-
form the results of trial 1 (Table 6-26) into the corresponding 
S/N ratio.

6-3. Table 6-27 shows the product of ANOVA performed on the 
observed results of an experiment. Determine the following 
from the ANOVA table.
a. Percent influence of the clearance factor.
b. Degrees of freedom of the speed factor.
c. Error degrees of freedom.
d. Influence of noise factors and all other factors not included 

in the experiment.
e. Confidence interval (90%) of the performance at the opti-

mum condition (use F-table for 90% confidence level).
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Table 6-26. Orthogonal array and test data
COLUMN
TRIAL

A
1

B
2

A × B
3

C
4

D
5 6 7 R1 R2 R3

Trial 1 1 1 1 1 1 0 0 45.00 56.00 64.00

Trial 2 1 1 1 2 2 0 0 34.00 45.00 53.00

Trial 3 1 2 2 1 1 0 0 67.00 65.00 60.00

Trial 4 1 2 2 2 2 0 0 45.00 56.00 64.00

Trial 5 2 1 2 1 2 0 0 87.00 81.00 69.00

Trial 6 2 1 2 2 1 0 0 78.00 73.00 68.00

Trial 7 2 2 1 1 2 0 0 45.00 56.00 52.00

Trial 8 2 2 1 2 1 0 0 42.00 54.00 47.00

Table 6-27. ANOVA
COLUMN FACTOR NAMES f S V F P

1 Speed 1 3.036 3.036 4.432 9.56

2 Oil viscosity (1) (1.91) Pooled

Interaction 1 15.820 15.820 23.093 61.57

4 Clearance 1 2.987 2.987 4.361 9.36

5 Pin straightness (1) (0.75) Pooled

All other/error 4 2.740 0.685 19.51

Total 7 24.584 100.00%

Note: Insignificant factorial effects are pooled as shown (   ).
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DERIVATION OF LOSS FUNCTION

In Chapter 2, Taguchi’s philosophy regarding the cost of qual-
ity was stressed. In his view, a poorly designed product causes 
society to incur losses from the initial design stage through to 
product usage. Therefore, he emphasizes good quality at the con-
ceptual stage of a product and onward, by optimizing the product 
design parameters as well as the production conditions, to create 
a robust product.

A question commonly asked is how much effort should an 
organization expend on quality. How can the point of diminishing 
returns be determined? In this section the basic mathematical 
formulation of Taguchi’s loss function is developed, and an outline 
of the steps used to apply the loss function is presented. The loss 
function has proven to be an excellent tool for determining the 
magnitude of the process (manufacturer) and supplier tolerances, 
based on quality as perceived by the customer. The methodology 
for realignment of tolerances is beyond the scope of this text.

Taguchi defined the loss function as deviation as a quantity 
proportional to the deviation from the target quality character-
istic. At zero deviation, the performance is on target and the loss 
is zero. If Y represents the deviation from the target value, then 
the loss function L(Y) is:

L Y k Y Y0

2
(7-1)

where
 Y = quality characteristics, such as dimension, performance, 

and so on
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 Y0 = target value for the quality characteristic
 k = a constant, dependent on the cost structure of a manu-

facturing process or an organization

It is important to note that:

1. The term (Y − Y0) represents the deviation of the quality 
characteristic Y from the target value Y0.

2. The equation for the loss function is of the second order 
in terms of deviation of the quality characteristic.

The loss function represented by Eq. (7-1) is graphically shown 
in Figure 7-1; it possesses the following characteristics:

1. The loss must be zero when the quality characteristic of a 
product meets its target value.

2. The magnitude of the loss increases rapidly as the quality 
characteristic deviates from the target value.

Figure 7-1. Taguchi quality loss function
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3. The loss function must be a continuous (second-order) 
function of the deviation from the target value.

Taguchi determined the loss function from a Taylor’s theorem 
expansion about the target value, Y0. Thus,

L Y L Y L Y Y Y L Y Y Y0 0 0 0 0

21

2!
(7-2)

where the terms with powers of (Y − Y0) higher than 2 are ignored 
as being too small for consideration.

In Eq. (7-2), L(Y) is the minimum at Y = Y0; hence, its first 
derivative, L (Y0), is zero. Therefore, Eq. (7-2) can be written as

L Y L Y L Y Y Y0 0 0

21

2!
(7-3)

The expression (1/2)L (Y0) in Eq. (7-3) is a constant and can 
be replaced by a constant k. Also, if Y0 is the mean value of the 
product/process, then Eq. (7-3) is interpreted as the loss about 
the product/process mean plus the loss due to displacement of the 
process mean from the target. If the process mean coincides with 
the target, the loss term L(Y0) is zero and the loss function reduces 
to Eq. (7-1),

L k Y Y0 0 0

2

The magnitude of the loss incurred because of the inability 
of a process to meet the target value of a quality characteristic, 
as computed using Eq. (7-1), is dependent on the target value, 
the manufacturing process, and the cost of rework, scrap, and 
warranty. For a given value of Y0, the value of k varies with the 
process and the organization. An organization seriously committed 
to achieving higher standards of quality in an optimum manner 
may develop families of loss curves for each process. One family of 
curves with different values of k is shown in Figure 7-2. The value 
of k for any application can be determined as outlined below.

Any mass-produced product exhibits variation in its quality 
characteristic. As long as the variation is small, the quality of 
the product is acceptable to the customer. Customer acceptance 
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determines the range of variation. If the perceived quality falls 
outside the range, the customer will not accept the product, and 
corrective actions at the design or process level are required.

Let this tolerance zone be ± . Then the quality characteristic 
at the extremes can be denoted as:

Y0 +  and Y0 − 

Poor quality exceeding the extremes necessitates corrective 
action such as a warranty cost of L0.

Let L0 be the loss at Y = Y0 + 

Then from Eq. (7-1):

L k Y Y0 0 0

2

Figure 7-2. Family of loss functions
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or

Therefore, Eq. (7-1) for this case becomes:

L Y
L

Y Y0

2 0

2

The above equation now completely defines the loss function 
in terms of the deviation from the target value.

AVERAGE LOSS FUNCTION FOR PRODUCT POPULATION

The loss function given in Eq. (7-1) represents the financial loss 
experienced by a single product when the quality characteristic, 
Y, of the product deviates from the target value, Y0. In a mass-
production process, the average loss per unit is expressed by:

L Y k Y Y k Y Y k Y Y k Y Y nn1 0

2

2 0

2

3 0

2

0

2

where n is the number of units in a given sample.
In the above equation, the factor k is common with every term, 

and therefore it can also be written as:

L Y k Y Y Y Y Y Y Y Y nn1 0

2

2 0

2

3 0

2

0

2

Note that the expression within the brackets is the mean square 
deviation (MSD), the average of the squares of all deviations from 
the target value, Y0. The average loss per unit can now simply be 
expressed by:

L(Y) = k(MSD) (7-4)

APPLICATION OF LOSS FUNCTION CONCEPTS

The loss function concept has two practical applications. The 
primary application is for estimating the potential cost savings 
resulting from the improvements achieved by optimizing a prod-
uct or process design. The loss function can serve as a measure of 
performance regardless of the method of the quality improvement. 
As long as variation is reduced by corrective actions or design im-

k
L0

2
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provements, the loss function presents a means for estimating the 
savings in terms of dollars and cents. It can also be used to determine 
if an investment to reduce variation is worth the cost. The second 
application is to determine manufacturer and supplier tolerances 
based on the customer’s perception of the quality range. In this case, 
the loss function provides an objective way to set the limits for the 
inspection of products at the manufacturer or supplier location. The 
following examples illustrate the use of the loss function.

Example 7-1
Machine Bracket Casting Process (Cost Savings)

Engineers involved in casting a machine bracket designed an 
experimental study to improve the process and reduce scrap rate. 
As a result of the study, a number of improvements were incor-
porated. Data were taken from 10 samples before and after the 
experiments. The foundry had a production rate of 1500 castings 
per month. The quality inspection criterion was a length dimen-
sion of 12 ± 0.35 inches. The parts that did not fall within the 
limits were rejected. The average unit cost for scrap or rework of 
the rejects was $20. The potential cost savings of the optimized 
process was calculated by the Taguchi loss function.

TEST DATA

Before Experiment
 11.80 12.30 12.20 12.4 12.1 12.2 11.9 11.8 11.85 12.15

After Experiment
 11.9 12.2 12.1 12.2 12.1 12.1 11.9 11.95 11.95 12.1

Other Data:
Target value = 12.00 in.
Tolerance = ±0.35 in.
Cost of rejection = $20.00
Production rate = 1500 per month

Solution

For this application, the expression of loss in terms of the 
MSD will be used.

L(Y) = k(Y − Y0)
2 for a single sample
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and

L(Y) = k(MSD) for multiple samples

Using Eq. (7-1), the constant k is determined as follows:

L = k(Y − Y0)
2

When all parts are made just outside of the specifications, 
that is, when

Y =Y0 ± Tolerance,

then L = k(Y0 ± Tolerance − Y0)
2

But the loss L in this case equals the cost of rejecting a part 
($20.00), and the tolerance is 0.35.

or 20 = k(.35)2

or k = 20/(.35)2 = 163.265

Therefore, from Eq. (7-4),

L = 163.265 (MSD) (7-5)

Using the data from samples before the experiment,

MSD 11 8 12 12 3 12 10

0 0475

2 2
. .

.

The MSD and other statistical parameters for this example, as 
shown in Tables 7-1, 7-2, and 7-3, are obtained by using the soft-
ware in [7]. The format of the design descriptions and the results 
are presented in the manner displayed by the software.

From Eq. (7-5) the average loss per unit is calculated as:

L = 163.265 × .0475 = 7.754 (in dollars)

Using the data from samples after the experiment,

MSD 11 9 12 12 2 12 10

0 0145

2 2
. .

.

From Eq. (7-6), the average loss per unit is calculated to be:

L = 163.265 × .0145 = 2.367 (in dollars)
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Table 7-1. Machine bracket casting process (Before experiment)
Observation No. 1 = 11.800
Observation No. 2 = 12.300
Observation No. 3 = 12.200
Observation No. 4 = 12.400
Observation No. 5 = 12.100
Observation No. 6 = 12.200
Observation No. 7 = 11.900
Observation No. 8 = 11.800
Observation No. 9 = 11.850
Observation No. 10 = 12.150

Target/nominal value of result = 12.00
Number of test results (NR) = 10

AVERAGE AND STANDARD DEVIATION:
Total of all test results = 120.70000
Average of test results = 12.07000
Standard deviation (SD) = 00.21756
Variance = 00.04733

LOSS FUNCTION PARAMETERS:
Mean square deviation (MSD) = 00.04749
Signal-to-noise (S/N) ratio = 13.23307
Variance (modified form) = 00.04259
Square of mean value = 00.00489

VARIANCE DATA (ANOVA):
Target value of data/test result = 12.00
Mean of data/deviation from target = 00.069999
Total variance (ST) = 00.426
(ST = variance * NR)
Correction factor (CF) = 00.04899
(CF = (average of data)2 * number of data)
Sums of squares/N = 00.47499

The average savings per unit is calculated by subtracting the 
loss after the experiment ($2.367) from that before the experiment 
($7.754). The total savings is then obtained by multiplying the 
average savings by the production rate as shown here.

Total savings per month = (7.754 − 2.367) × 1500
 = $8080.50
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Table 7-2. Machine bracket casting process (After experiment)
Observation No. 1 = 11.900
Observation No. 2 = 12.200
Observation No. 3 = 12.100
Observation No. 4 = 12.200
Observation No. 5 = 12.100
Observation No. 6 = 12.100
Observation No. 7 = 11.900
Observation No. 8 = 11.950
Observation No. 9 = 11.950
Observation No. 10 = 12.100

Target/nominal value of result = 12.00
Number of test results (NR) = 10

AVERAGE AND STANDARD DEVIATION:
Total of all test results = 120.50000
Average of test results = 12.05000
Standard deviation (SD) = 00.11547
Variance = 00.01333

LOSS FUNCTION PARAMETERS:
Mean square deviation (MSD) = 00.01450
Signal-to-noise (S/N) ratio = 18.38631
Variance (modified form) = 00.01200
Square of mean value = 00.00250

VARIANCE DATA (ANOVA):
Target value of data/test result = 12.00
Mean of data/deviation from target = 00.05000
Total variance (ST) = 00.12000
(ST = variance * NR)
Correction factor (CF) = 00.02500
(CF = (average of data)2 * number of data)
Sums of squares/N = 00.14500

Example 7-2
Dryer Motor Belt (Manufacturer/Supplier Tolerance)

Alarmed by a high rate of warranty repairs of drive belts for 
one of its products, the distributor sought to reduce such defects. 
The field reports suggested that the problem was mainly caused 
by the lack of adjustment of tension in the drive belt. To correct 
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the situation at the customer’s location, the field repairmen had 
to adjust the tension to 100 ± 15 lbs. Field service cost is $40 per 
unit. Alternately, the adjustment of tension could be made by the 
manufacturer at a unit cost of $15. The distributor wants to ask 
the manufacturer to make such adjustments prior to shipment in 
order to eliminate the field service and maintain satisfied custom-
ers. What range of tolerance in belt tension should the distributor 
specify for the manufacturer?

Solution

For this application, an understanding of the role of the three 
parties, namely customer, manufacturer, and supplier, will be helpful. 
In the context of tolerance specification, the three terms correspond 
to three stages of product life. The supplier is the one who supplies 
a component or part of the finished product to the manufacturer. 
The manufacturer is the one who assembles the final product. The 

Table 7-3. Calculation of loss
PROBLEM DEFINITION
Target value of quality characteristic (m) = 12.00
Tolerance of quality characteristic = 0.35
Cost of rejection at production (per unit) = $20.00
Units produced per month (total) = 1500
S/N ratio of current design/part = 13.23307
S/N ratio of new design/part = 18.38631

COMPUTATION OF LOSS USING
TAGUCHI LOSS FUNCTION
Loss function: L(y) = 163.26 × (MSD)   Also L(y) = K × (y – m)2

BEFORE EXPERIMENT:
Loss/unit due to deviation from target 
in current design = $7.754

AFTER EXPERIMENT:
Loss/unit due to deviation from target
will be reduced from $7.754 to = $2.367

MONTHLY SAVINGS:
If production is maintained at the improved
condition, then based on 1500 units/month = $8080.50
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customer is the one who uses the product and experiences its per-
formance. In this example, the distributor and the customers are 
considered to be the end users. The customer and the manufacturer 
may have a supplier (not identified) for the motor and belt assem-
bly. The relationships among the three can be represented in the 
following way.

Supplier  Manufacturer  Customer
(Belt + motor) (Washer) (Washer in use)

Tolerance required:
(unknown) (unknown) (±15 lbs.)

From Eq. (7-1) we have

L(Y) = k(Y − Y0)
2 = k (Tolerance)2

where

Tolerance = Y(max. or min.) − Y0

Based on a repair cost of $40 at the customer’s installation, 
the loss per unit is $40.

Because

Y0 = 100, Y = 100 + 15 (max.), and L(Y) = 40

k = 40/(100 + 15 − 100)2 = 0.17778

Therefore,

L(Y) = .17778 (Tolerance)2 (7-6)

Using the repair cost of $15 at the manufacturer’s facility as 
the loss, the tolerance now can be determined by using the above 
relation.

 Tolerance = (L/.17778)1/2 = 9.18
(Manufacturer)

or
 Tolerance limits = 100 ± 9.8

If the manufacturer determined the problem to be caused by 
a specific component, then correction at the supplier’s facilities 
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would be appropriate. A different set of specifications may be re-
quired. Assuming the cost to make an adjustment at the supplier 
is $5 per unit, what tolerance should the manufacturer require 
of the supplier to assure the required quality?

Using Eq. (7-4) with L(Y) = 5

5 = .178 (Tolerance)2

and

Tolerance = (5/.17778)1/2 = 5.30

Therefore

Tolerance limits for supplier = 100 ± 5.3

The solutions are presented in Figure 7-3.

Example 7-3
Fuel Pump Noise Study

In an experimental study of an automotive fuel pump noise, 
three two-level factors were included as shown in Table 7-4(a). 
The Taguchi L4 orthogonal array was used to define the four 
trial conditions. Six samples at each of the trial conditions were 
tested, and the results were recorded as shown in Table 7-4(b). 
The levels were selected so that trial condition 1 represents the 
current design of the fuel pump. If the decision is made to change 
the design to the determined optimum configuration, estimate the 
performance at the optimum design and the cost savings when 
the new fuel pump is produced.

Solution

The complete solution of this problem is shown in Tables 7-
4(b) and 7-4(c). In calculating the cost savings, notice that the S/N 
ratios at trial condition 1 and the optimum condition are taken 
directly from the analysis of the Taguchi experimental results. 
(Solutions used [7].)

LOOKS OF PERFORMANCE IMPROVEMENT

The common purpose for carrying out an experimental study 
is to determine a new design condition (improved) that is better 
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COMPUTATION OF MANUFACTURER AND SUPPLIER TOLERANCE
Nominal value of the quality characteristic = 100 lbs
Tolerance of Y (range of deviation)                            = ±15 lbs
Cost to repair a nonfunctioning unit by customer         = $40.0
Cost to repair a nonfunctioning unit by manufacturer   = $15.0
Cost to repair a nonfunctioning unit by supplier          = $  5.0

REQUIRED TOLERANCES
Manufacturer tolerance = 100 ± 9.18
Supplier tolerance        = 100 ± 5.3

NOTE: If these tolerances are held, there will be no nonfunctional part in the
customer’s hands. For the same cost, the manufacturer will maintain satisfied
customers and quality products in the field.

Y

S = Supplier tolerance         100 ± 5.8
M = Manufacturer tolerance 100 ± 9.18
C = Customer tolerance       100 ± 15

Figure 7-3. Manufacturer and supplier tolerances
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than the current status. When improvement is achieved, it is 
necessarily reflected in lowering the standard deviation (vari-
ance, 2) and/or reducing the distance of mean performance from  
the target. Of course, when variation is reduced, with or without 
change in distance to the target, common performance measures 
like capability indices (Cp and Cpk) increase and Taguchi loss (L)
decreases. While all of these numerical indices are easily computed, 
for better visualization of the improvement a plot of the distribu-
tion is most desirable.

A direct way to draw a distribution diagram is possible when a 
large number of data (N) is available. Unfortunately, test sample 
size in DOE is generally small. In this case and in situations 
where the observed performance data are not available, the dis-
tribution can only be plotted from analytical expressions. When 
performance is assumed to be normal, the distribution plot can 
be easily created using the average and the standard deviation for 
the expected performance.

Table 7-4(a). Fuel pump noise study—Example 7-3
COLUMN FACTOR LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Seal thickness Present Thicker

2 Rotor chuck type Present New design

3 Finger to drive C1 Present Increase

Note: Three two-level factors studied.
Objective: Design least noisy and best-performing pump.
Characteristic: Nominal is best (SIQ = 60 target).

This experiment will use L4.

COLUMN
TRIAL

1 2 3

Trial 1 1 1 1

Trial 2 1 2 2

Trial 3 2 1 2

Trial 4 2 2 1
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Table 7-4(b). Fuel pump noise study (Result: Main effect and ANOVA)
Original Observations and Their S/N Ratios
Quality Characteristic: Nominal is Best 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       S/N

 1 67.00 85.00 87.00 65.00 59.00 76.00 –20.71

 2 65.00 65.00 66.00 54.00 73.00 58.00 –18.99

 3 54.00 45.00 56.00 45.00 63.00 46.00 –25.89

 4 56.00 67.00 45.00 54.00 56.00 74.00 –23.36

Main Effects      

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Seal thickness –19.85 –24.63 –4.78 00.00 00.00

 2 Rotor chuck type –23.30 –21.18   2.12 00.00 00.00

 3 Finger to drive –22.04 –22.44 –0.41 00.00 00.00

ANOVA Table      

 SUM OF   
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Seal thickness 1 22.801 22.801 82.97

 2 Rotor chuck type 1   4.512   4.512 16.43

 3 Finger to drive 1   0.164   0.164                00.60

All other/error 0

Total: 3 27.480   100.00

Regardless of the nature of distribution, given a set of ob-
served data (say, 9.2, 8.9, 9.3, 9.6, and so on, for a 9-volt battery 
sample), average (a), , MSD, S/N, Cp, and Cpk can be easily cal-
culated. Conversely, if S/N is known, as is the case when DOE 
results are analyzed using S/N ratios, value of the expected can
be estimated.

The current condition of a product studied for improvement 
was found to have the following statistics.

Current Condition

Average performance aligned with the target value (assumed 
for simplistic calculation) is:



200 A Primer on the Taguchi Method

Table 7-4(c). Fuel pump noise study (Optimum and cost savings)
Estimate of Optimum Condition of Design/Process
Quality Characteristic: Nominal is Best

 FACTOR DESCRIPTION LEVEL DESCRIPTION LEVEL CONTRIBUTION

 Seal thickness Present design 1 2.3875
 Rotor chuck type New design 2 1.0625
 Finger to drive clearance Present design 1 0.2025

Contribution from all factors (total)  3.6524
Current grand average of performance  –22.2375
Expected result at optimum condition  –18.5850
This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.

CALCULATION OF LOSS

PROBLEM DEFINITION
Target value of quality characteristic (m) = 70.00
Tolerance of quality characteristic = 20.00
Cost of rejection at production (per unit) = $45.00
Units produced per month (total) = 20000
S/N ratio of current design/part = –20.71
S/N ratio of new design/part = –18.585

COMPUTATION OF LOSS USING
TAGUCHI LOSS FUNCTION
Loss function: L(y) = 0.11 × (MSD)   Also L(y) = K × (y – m)2

BEFORE EXPERIMENT:
Loss/unit due to deviation from target 
in current design = $12.953

AFTER EXPERIMENT:
Loss/unit due to deviation from target
will be reduced from $12.953 to = $7.941

MONTHLY SAVINGS:
If production is maintained at the improved
condition, then based on 20000 units/month = $100,246.90

S/N = –35.249 (or MSD = 3348.88) and
Std. dev. ( ) = 13.402

The specification limits needed for calculation of capability 
statistics are:
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Lower specification limit (LSL) = 18.374 
Upper specification limit (USL) = 98.791

Improved Condition

After completing the experimental study for the smaller is
better quality characteristic, the performance at optimum condi-
tion (improved condition) expressed in S/N ratio was estimated 
to be:

S/N = 32.081 (or MSD = 1614.73)

Estimated Statistics at Improved Condition

Based on the known statistics at the current condition and 
S/N at the improved condition, the expected performance with 
the improved design can be calculated and the distribution rep-
resented as shown below.

Because MSD 2 (when mean performance is on target, MSD 
is proportional to variance), then

2 2improved
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currentcurrent

improved

        

or 
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Thus, Savings (1.00 – 0.483) = 51.7 cents for every dollar spent 
at current condition.
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And because Process Capabilities (Cp and Cpk)  (1/ )
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The plot of variation reduced by adopting optimum design 
along with statistics calculated above is shown in Figure 7-4 (graph 
from [7]). The reduction of variation is expected to lower the rejec-
tion and warranty items, which results in cost savings expressed in 
terms of percentage of the loss at the current condition. A single 
figure like this can capture the essence of improvement expected 
and represent it graphically for all to understand.

EXERCISES

7-1. The manufacturer of a 10.5-volt smoke alarm battery employed 
the Taguchi method to determine the better design param-
eters. The experimenters estimated the signal-to-noise (S/N) 
ratio for the proposed design to be 6.3. Based on a sample 
inspection of the current production process, the S/N ratio was 
calculated to be 5.2. The analysis of warranty showed that 
when the battery voltage was beyond (10.50 ± 0.75) volts, 
the smoke alarm malfunctioned and customers returned the 
batteries for $6.50 each. Determine the monthly savings that 
the proposed new design is expected to generate if 20,000 
units are manufactured each month.
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7-2. Suppose that the manufacturer in Exercise 7-1 decides not to 
adopt the new design but chooses to screen all defective bat-
teries in the manufacturing plant before they are shipped to 
the customers. The cost for inspection in the plant is estimated 
to be $3 per battery. If the same amount of warranty cost is 
incurred in the inspection process, determine the tolerance 
limits for the inspection.

Figure 7-4. Plot of variation reduction as indication of performance improve-
ment (graph from [7])
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THE NECESSITY OF BRAINSTORMING

In applying the Taguchi technique, brainstorming is a neces-
sary step in the process (Figure 8-1) and is essential for designing 
effective experiments. Taguchi recommends brainstorming to 
overcome cross-organizational barriers. By including representa-
tives of all departments in the project team, from design through 
marketing, the quality demanded by the customer can be consid-
ered, and those production factors that may contribute toward 
quality can be identified and incorporated into the design of the 
experiments.

The benefits of brainstorming are obvious. The design does not 
belong to any one group—it belongs to all. Brainstorming identifies 
characteristic effects and the environment known to the group as 
a whole. Measurement techniques can draw on many disciplines. 
The outcome is better than it would be when one activity assumed 
all responsibilities.

Taguchi does not prescribe a standard method of brainstorm-
ing as applicable to all situations. The nature and content of the 
brainstorming session will vary widely depending on the problem 
and the experience of practitioners. For most studies, a formal 
session is highly effective. In many instances, brainstorming can 
be completed in a few hours, but for most projects the session may 
take a good part of a day dedicated for the purpose.

One method of conducting brainstorming, or what is normally 
referred to as an experiment planning session for the Taguchi 
experimental design, is presented in the text. The procedure has 
been found to be effective by the author in his experience with 
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various client industries. The procedure is not standard nor is it 
Taguchi’s; it is the author’s.

THE NATURE OF THE SESSION

The following guidelines help determine the participants and 
the content of the brainstorming session:

Purpose of the Brainstorming or Experiment Planning Session

1. Determine project objectives; identify factors, levels, 
and other pertinent information about the experiment, 

1
Hold
Experiment
Planning
Discussions

2
Design and
Describe Test
Recipes

3
Carry Out
Planned Tests
and Collect
Results

4
Analyze Test
Results and
Prescribe
Solutions

5
Run Tests to
Confirm
Solutions

Team on site

Facilitator off site

Project team

Figure 8-1. Five-step product or process study roadmap
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collectively, with all of the project team composed of 
personnel from departments concerned with a successful 
outcome from the experiment.

2. Build team spirit and attitude to assure maximum partici-
pation and ownership of the team members.

3. Develop a consensus on the selection and the determina-
tion of those items that are objective and those that are 
subjective in nature.

Team Leader

For the successful completion of a Taguchi case study, the ap-
pointment of a team leader, from among the project team members, 
is necessary. The team leader must recognize the need for a brain-
storming session and call for such a session. The leader should 
try to hold the session on neutral ground on a pre-announced day. 
The leader should ensure the participation of all team members 
with responsibilities for the product/process.

Session Facilitator

The session should be facilitated by someone with a good 
working knowledge of the Taguchi methodologies. Engineers or 
statisticians dedicated to helping others apply this tool often make 
better facilitators. A facilitator need not be a participator unless 
the project leader facilitates the session. The facilitator initiates 
and leads the discussion but never dominates it.

Who Should Form the Project Team?

All those who have first-hand knowledge and/or a stake in 
the outcome should be included. For an engineering design or a 
manufacturing process, both the design and the manufacturing 
personnel should be part of the team. If cost or supplier knowledge 
are likely factors, then persons with experience in these matters 
should be encouraged to participate (group size permitting). Mar-
keting personnel should attend the planning session to provide 
customer viewpoints.
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What Should Be the Size of Project Team?

The more the better. However, the time involved is proportional 
to the number attending. The upper limit should be 15. There 
can be as few as two. No matter the number of people involved, 
brainstorming will immensely benefit the whole process. More 
important than size is proper representation from all depart-
ments involved in design, development, production, marketing, 
sales, and service.

Is Taguchi Training a Prerequisite?

No. Some exposure will help. Application experience on the 
part of some participants will be a plus. A facilitator with appli-
cation experience can help the participants with brief overviews 
when needed.

What is the Agenda for the Session?

The experiment planning session is the first step in application 
process and is preceded by:

• Identification of a project by sponsors and stakeholders
• Appointment of the project leader and 
• Formation of the project team

Below is the recommended list of topics and sequence of dis-
cussions as shown in Figure 8-2. The emphasis and length of the 
discussion, however, will differ significantly for different problems 
being addressed.

TOPICS OF THE DISCUSSIONS

The following topics should be included in the agenda for the 
brainstorming session.

• Define the system under study
• Select project title
• Describe objectives of experiment
• Define performance (results) and units of measurement
• Determine evaluation criteria and create OEC table
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• Brainstorm and qualify factors for study
• Establish levels of study factors
• Select interactions and noise factors for study
• Indicate sample size for trial conditions
• Prescribe sample size and summarize experiment planning 

discussions

Define the System Under Study

Defining your product or process under study in terms of a 
system is essential for effective experimental study. The task is to 
review the product/process flow diagram and define the boundaries 

Brainstorming
for Design of Experiments

– Assign project title and define objectives
Assign personnel from function organization
Identify quality characteristics
Determine how each attribute is measured

–
–
–

Determine:
Control factors
Noise factors
Factor levels

–
–
–

Scope of project:
How many experiments
How many repetitions

–
–

Assign tasks:
Who does what–

Figure 8-2. Agenda for a brainstorming session
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of the areas investigated. Depending on the concern or problem 
that prompts such study, the system may include one or more of the 
subprocesses that constitutes the performance. For example, in a 
baking process shown in the flow diagram of Figure 8-3, there are 
three subprocesses. If the concerns are strictly about mixing and 
baking, the system may be defined with only the last two subpro-
cesses. Such definition of the system helps the project team more 
clearly identify input and output of the process under study.

Select Project Title

The team needs to agree on a title for the experimental 
study. The title is an important identifier for the activities 
being undertaken. The title needs to be something that relates 
to the product or process under study. Once the system is 
defined, the title should describe the scope of the study. For 
example, if the system only includes mixing subprocess in the 
cake baking process, the title can be “Cake Ingredients Mixing 
Process Study.” On the other hand, if the system includes both 
mixing and baking subprocesses, “A Pound Cake Baking Process 
Parameter Study” may be more appropriate.

Describe Objectives of Experiment

Discuss and agree (majority consensus) on the purpose of 
launching the study. Describe this in two to five connected sen-
tences or a list of bulleted items. Bear in mind that the project 
goal may include single or multiple objectives.

No matter how you prefer to define the objectives, it is a good 
idea to describe in a few brief sentences the reason for the study. 
The reasons may be to solve a problem, optimize designs, lay out 
validation tests, or increase response from an advertisement, and 
so on. No matter the real reason, the activity may be viewed as 
trying to solve a problem, that is, to fill a void or absence of some-
thing. In other words, when you are finished with the experiment, 
you will obtain something that you do not have now (problem). 
The project may be stated as a problem you are interested in solv-
ing. Here’s how the project description can be articulated for a 
“Plastic Molding” project.
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Example Description

“We have been experiencing high rejects and warranty 
from our plastic molding process. This study is undertaken 
to determine process parameters that will reduce our scrap 
rate. The improved process design is also expected to keep our 
customers satisfied and affect our bottom line.”

The project description may be composed during or after the 
planning session. Below are a few questions to help describe your 
projects and define the objectives.

— What are the reasons for performing this project?
— What is it that you want to accomplish with this project?
— What specific objectives/goals you wish to achieve from 

this project?

If the study involves baking pound cakes, the objectives may 
be considered be to: (a) improve taste, (b) increase moistness, (c) 
prolong shelf life.

Figure 8-3. System view of process (cake baking)

System

Input Output

System may be defined one of three different ways
shown above (dashed-line rectangles).

Note: OUTPUT of previous subprocess is INPUT to the next. For example, Batter is output
of the Mixing process but input to the Baking process.

Gather
ingredients

Mix ingredients
(make batter)

Bake cake
in oven
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Define Performance (Results) and Units of Measurement
This is an important topic of discussion. The goal is to review 

all objectives carefully and define the evaluation criteria and the 
units of measurement applicable to each objective. The task can 
be quite complicated when there are multiple objectives, and it is 
important to satisfy them all.

Typical discussion can proceed as described here. Suppose that 
you are to plan a Taguchi experiment to determine the best recipe 
for the pound cake. The first question is, what are we after? Of 
course, everyone will agree that they are after the best cake. Ob-
viously, the taste of the cake will be a criterion. But how can the 
taste be measured? How many will taste it? For a subjective evalu-
ation like taste, evaluation by more than one person is desired. 
If more than one individual is involved, how can the net result 
be evaluated? A possible solution is to rate the cakes in terms of 
a numerical scale, say, on a scale of 0 to 10. Is number 10 for the 
best taste? This needs to be defined. It can be anything agreed 
on. But it is important that the matter be discussed, as this rule 
will dictate the sense of the quality characteristic. If 10 represents 
the best and 0 the worst, then the quality characteristic becomes 
“bigger is better.” If five people taste the experimental cakes and 
the ratings vary, whom do we believe? Recognize all of the ratings 
and record the average of all five evaluations.

Determine Evaluation Criteria and Create OEC Table

When there are multiple criteria involved in evaluating one or 
more objectives, you may consider combining the evaluations into 
a single criterion for convenience. The discussions and rationale 
for this are explained in the following discussions for the cake 
baking project.

Is taste the only parameter to compare two cake samples? If 
two cakes have the same taste, can a second parameter distinguish 
between them? What about the moistness? One individual may 
prefer a moister over a drier cake. How about shape, appearance, 
or shelf life? Perhaps moistness is somewhat less important than 
the taste. The idea of the brainstorming is to raise all of the ques-
tions, bring up all of the issues, whether important or not.
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How would one measure moistness? By appearance? Perhaps 
one would decide to take a fixed slice and weigh it and note the 
weight in ounces. This is an objective measurement. But what is 
a “standard” slice? One would not necessarily need more than one 
measurement. Suppose that we agree to consider just these two 
criteria, that is, taste and moistness. Taste is subjective on a scale 
of 0 to 10; moistness is measured in ounces. How should one make 
sense out of the two values? How would we compare a cake rated 
7 for taste and 4 ounces for moistness with another rated at 8 for 
taste and 3.5 ounces for moistness? What index can be devised to 
distinguish between the two samples? How can the data mix of 
subjective and objective values be combined and analyzed?

Are these criteria to be given equal weight or unequal weight? 
How important is moistness compared to taste? Is the moistness 
one-fourth as important as the taste? Is an assignment such as 
taste is 80% and moistness is 20% reasonably correct? In other 
words, if one were to split a dollar among all of the criteria, in 
accordance with the priority, how would one distribute the 100 
cents? When such a question is asked of different groups, the 
responses are never the same. One group may feel taste is worth 
80%, another group may say 60%. As a general rule, when con-
fronted with subjective areas such as these, let consensus prevail. 
Let everyone participate. Let everyone offer their input. For each 
of the items, determine the group average.

Suppose that the consensus of the group has been that the 
weighting of the two quality criteria should be 68% for taste and 
32% for moistness. With this knowledge, one can proceed to com-
bine the evaluations and produce a single quantified number called 
overall evaluation criterion (OEC). The evaluation parameters for 
the problem can be summarized as in Table 8-1.

Table 8-1. Overall evaluation criteria (OEC)
CRITERIA VALUE UNITS WEIGHTING MAXIMUM VALUE

Taste 5 (y1) None 68 (w1) 10 (y1max)

Moistness 4.5 (y2) Ounces 32 (w2) 6 (y2max)
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The overall evaluation criterion (OEC) can be defined as:

OEC y y w y y w1 1 1 2 2 2

5 10 68 100 4 5 6 32 100

0

max max

.

.. .

.

34 0 24

0 58

where

 wi = weight of ith component
 yi = measurement of ith criterion
 yimax = maximum value of ith criterion

Observe that the evaluation (y) in each case is divided by the 
maximum value. This is done to get rid of its units (normaliza-
tion). When multiplied by the weighting, a dimensionless number, 
the resulting values for each criterion are added to produce a net 
result in numerical dimensionless terms.

Suppose that an L8 array is used to describe the eight trial 
conditions for the experiment. The eight cakes will have to be 
evaluated following the scheme given above. The OEC calculated 
above (OEC = 0.58) will represent the result for one trial. There 
will be seven other results like this. The eight values (OECs) will 
then form the result column in the orthogonal array (OA). The 
process will have to be repeated if there were repetitions in each 
trial condition.

Discussions of factors and levels follow that of quality charac-
teristics. The nature of these issues are based on common sense and 
some understanding of the problem under investigation. A leader 
or facilitator will often find it convenient to let their experience 
determine the flow of the discussions. The remaining portion of 
the brainstorming session is left up to the reader’s imagination.

Brainstorm and Qualify Factors for Study

The discussion and identification of experimental factors 
should only begin after the objectives and evaluation criteria are 
defined. To do it any other way will be unwise. The approach to 
determine factors for study should follow this sequence.
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• Solicit ideas and prepare a long list of potential factors.
• Scrutinize all ideas and prepare a qualified list of factors.
• “Paretoize” the list (from most to least important factors).

Long List

Brainstorm, solicit, and list ideas and suggestions about how 
to make improvements and what are the possible sources of influ-
ence. Realize that, by now, all involved on the team already know 
what you are after and what are the objectives. The goal here is 
to capture a quantity of ideas and list them. All ideas gathered do 
not necessarily make valid factors. However, all suggestions and 
ideas solicited must be collected without concern for validity. The 
time for scrutiny and consideration for study will come later. 

Below are sample questions that may initiate thoughts about 
factors:

• What are some of the actions you can take to improve and 
satisfy performance objectives?

• What are variables (materials/environmental factors/con-
stituents/settings/parameters, etc.) that may influence the 
outcome of the project?

• If you have done some process studies and have prepared 
cause-and-effect diagrams (fishbone or Ishikawa diagrams), 
what are some of the factors that were identified?

If you have a number of people on your project team, this is 
a good time to ask ideas from each and every person. You do not 
want to leave “any stone unturned.”

If you are alone on the project, or working with a few members 
on your team, it is a good idea to pause and attempt to collect 
as many ideas as possible. For the preliminary list of ideas, the 
longer the list the better chance you have to capture all possible 
influencing factors.

Qualified List

After you have captured ideas and have a quantity of them 
listed, you will need to qualify them and identify the valid factors 
and noise factors by scrutinizing each from the long list. Use the 
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following criteria to scrutinize and qualify ideas. The purpose of 
this exercise is to clean up the list to select only those that are 
factors (input and controllable). For a factor to be a factor, it must 
be something that is:

a. An input
b. Controllable at reasonable (or no) cost
c. Adjustable
d. Suspected to have influence on the result
e. Able to be varied independently

The process you should follow is to examine each item in the 
list and see that it meets one or more of the above criteria. Discard 
all those that are not factor. Separate those that meet factor cri-
teria but are not controllable or that you do not want to control. 
Identify them as uncontrollable factors (noise factors) and put 
them at the bottom of this list.

The result will be a shorter list containing qualified control-
lable and uncontrollable factors. You should now attempt to gather 
consensus from the group to place all controllable factors in this 
list in descending order of importance. A quick way to achieve 
such group priorities is to ask all on the team to distribute 10 (or 
20, depending on the number of factors) pennies to the factors in 
proportion to personal preferences. Obviously, one will have the 
option to put some pennies to a few factors and none to others. 
Add all pennies assigned to each factor and use this number to 
arrange the factors in descending order. This ordered list of quali-
fied factors will help you easily select the factors to include in the 
study. To decide how many of these factors you can study, follow 
the logical reasoning described below. For discussion purposes, 
assume that your qualified list comprises 13 factors (listed in 
descending order) and three noise factors.

Study List

Here you would select factors that you wish to include in the 
study. Often this list will be shorter than the qualified list.

When you conduct an effective brainstorming with your team, 
it is very likely that you will identify and qualify a larger number 
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of factors than what is the limit of the size of the experiment. Of 
course, if money and time are not of concern, you would always 
want to study all qualified factors with whatever the size of the 
experiment. Generally, though, the scope will be limited, so you 
should ask yourself (if you are the team facilitator and/or leader) 
and others on the team about the scope of the study. Specifically, 
you would be asking questions such as, how many separate experi-
ments can be done, how many samples can be fabricated, and what 
test equipment is available. The answers to these questions are 
very important to help decide the size of the experiment, and con-
sequently, the factors you will be able to include in the study. 

Suppose the answer to the number of separate experiments is 
fewer than 10. In that case, the largest size of the array for your 
experiment is L-8 or L-9. Understand that at this point you do not 
know what the levels of the factors need to be or which factors will 
be included in the study. Your intention will be to include as many 
factors as possible. So, the strategy here is to select factors first 
assuming all factors at two levels and then adjust later if some 
factors need to be at three or four levels. The limit of 10 separate 
experiments will lead you to select an L-8 array for the experiment, 
which dictates that you study only seven two-level factors. From 
the ordered qualified list, select the top seven out of 13 factors. 
For convenience, use symbols/notations of A, B, C, and so on, for 
these factors. You now have a study list of seven factors.

Establish Levels of Study Factors

This discussion should lead to establishing the levels of all 
factors in the study list one at a time. Based on the level require-
ments, which have not yet been discussed, you may need to modify 
the scope of the design (array size) after the levels of all factors 
are determined.

The first issue in determining the level of factors (A, B, C,
etc.) is to decide how many levels the factor should have. Gener-
ally, all factors should have two levels but may have three or four 
levels depending on the need. If a factor is a discrete/fixed factor 
(such as tools, machine, shifts, male/female operator, and so on), 
it may require more than two levels. Also, if a factor is known to 
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have nonlinear behavior, it may be necessary to study it in three 
or four levels. Otherwise, you should study all factors at two levels 
when possible, as higher than two levels may cause increased size 
of the array.

Pick each factor separately to decide its number of levels (two, 
three, or four) and define the value or description for experimental 
setup. Use these guidelines:

• The number of levels should be two unless more are re-
quired because the factor is discrete or known to be highly 
nonlinear.

• The values of the factors should be as far away from either 
side of the current working condition as possible. The 
levels should be such that the expected results become 
measurably different under trial-to-trial conditions. The 
levels should be such that they are practical with which 
to carry out the tests and that they can easily be released 
if identified to be part of the optimum condition.

As you complete setting the levels of all factors, should you 
have factors that require more than two levels (three or four), 
you will then need to drop factors to make room for this factor 
(level upgrade) or select for a larger array for the experiment. 
For example, if you have one of the seven factors at four levels, 
you will need to drop two of the seven factors to make room for a 
four-level factor. You will then modify the L-8 array to accommo-
date this four-level factor (requiring three columns for upgrade) 
and four remaining two-level factors. However, before you can 
complete the design process, you will need to consider interaction
and noise factors that might be part of the study and may indeed 
reshape the experiment.

Select Interactions and Noise Factors for Study

Following selection of factors for the study, interactions and 
noise factors must be considered. If you choose to study interac-
tions, you may do so by going with a larger array or selecting a 
few interactions to study in lieu of some factors. Likewise, you 
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need to consider robust design by including noise factors by using 
an outer array in your experiment. 

For interactions, consider only the interactions between two 
two-level factors (such as A×B, B×C, and so on). Understand 
that if you have seven two-level factors, there are 7 × (7 – 1) = 
21 possible interactions. You are now faced with two questions: 
how many interactions to study, and which ones among all pos-
sible ones to study. Generally, you do not have any knowledge to 
answer these questions. But, if you happen to have the knowledge 
and/or conviction to decide on some interactions to study, you will 
have to revise your experiment design. Suppose that you have two 
interactions that you must study. Because your limit on the size 
of the experiment is seven columns (in an L-8), you could do so by 
discarding two factors to make room for the two interactions that 
have a common factor. If, on the other hand, you want to study all 
21 interactions and seven factors, you will require an array that 
has 28 or more columns. To do so you will need to increase the 
size of the experiment and go for an L-32 array.

A general recommendation is that you select the biggest array 
possible and accommodate all factors first. Then if you have spare 
columns, reserve them to study interactions. This is in line with 
the philosophy “dig wide and not deep” that Taguchi espouses.

The last item to consider before finalizing the experiment 
design is to formally incorporate the effects of noise factors. The 
most desirable way to include uncontrollable/noise factors is to 
go for an outer array design where an orthogonal array is used to 
formally combine the noise factors. To select robust design condi-
tions, the tests under different recipes of the control factors are 
repeated by exposing them to the influence of the noise condition 
so created. The noise factors, of course, are uncontrollable in real 
life but are assumed to be controllable while conducting the tests 
in a laboratory environment. 

If there are three noise factors (each at two levels) in the ex-
periment, you would use an L-4 array as an outer array. This will 
require that you run each trial condition (of the control factor) 
four times by exposing them to four separate noise conditions. 
Such formal treatment of the noise factors requires more samples 
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and time in carrying out the experiments but is likely to produce 
more useful information about the system under study.

A general guideline to follow is to go for a robust design ap-
proach using an outer array; if this is not possible, carry out 
multiple sample tests in each trial condition under random noise 
conditions.

Prescribe Sample Size and Summarize Experiment Planning Discussions

Before you adjourn your planning meeting, you need agree 
on the number of test samples in each trial condition and share 
plans for conducting tests, acquiring test facilities, and the data 
collection procedures with all on the team. If possible, you should 
also form consensus on the length of time and schedule of com-
pleting the study.

Finally, a summary of the information gathered from the 
planning session will be helpful for the team. This could be a 
quick review with the group before you adjourn meeting with the 
team, or prepare it after the meeting and share it with the team 
members. You will need this summary page when you start using 
computer software such as [7] to design the experiment. Your 
planning summary should contain the following information.

Project Title _______________________   Location _____________________

Participants: 1. __________________   2. __________________
3. __________________   4. __________________

Criteria Description Worst Value Best Value QC Rel. Weighting

1.
2.
3.
etc._____________________________________________________________

Your OEC equation (if criteria are combined)
OEC = (          ) x     + (           ) x     + (          ) x     + (          ) x
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Example:

FACTORS Level 1 Level 2 Level 3          Level 4

1.
2.
3.
etc._______________________________________________________

Note: Optionally, list interactions and noise factors you wish to include in your study. 
Also, indicate the inner and outer arrays used for the experiment design and how 
the control factors and noise factors will be assigned to the columns of the arrays. 
Based on the final design, indicate the test sample size requirements.

EXERCISES

8-1. In an experiment involving the study of an automobile door 
design, two criteria were used for evaluation purposes. Deflec-
tion at a fixed point in the door was measured to indicate the 
stiffness, and the door closing effort was subjectively recorded 
on a scale of 0 to 10.
a. Develop a scheme to define an overall evaluation criterion.
b. Explain why the overall evaluation may be useful.

8-2. During the brainstorming session for a Taguchi experiment, 
a large number of factors were initially identified. Discuss the 
type of information that needs to be considered to determine 
the number of factors for the experiment, and state how you 
will proceed to select these factors.

8-3. A group of manufacturing engineers identified the following 
process parameters for an experimental investigation:
• Fourteen two-level factors (not all considered important)
• One interaction between two factors (considered important)
• Three noise factors at two levels each (considered important)

If the total number of trial runs (samples) is not to exceed 
32, design the experiment and indicate the sizes of the 
inner and outer arrays.

8-4. Brainstorm and carry out the experiment planning session follow-
ing the steps discussed in this chapter. The experimental design 
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should be supported by the information provided in the follow-
ing problem descriptions. Go through the planning process and 
prepare a summary of experimental data, including title, project 
objectives, OEC (if applicable), factors for study, and so on.

Problem Description

Engineers and production specialists in a supplier plant wish to 
optimize the production of foam seats for automobile manufacturers. 
The improvement project has been undertaken because there have 
been complaints from the customer about the quality of the delivered 
parts. The main defects found in the foam parts are: (1) excessive 
shrinkage, (2) too many voids, (3) inconsistent compression set, and 
(4) varying tensile strength. There appears to be general agreement 
that these are the primary objectives; however, there is no consensus 
as to their relative importance (weighting). Most of the individuals 
involved are aware that just satisfying one of the criteria may not 
always satisfy the others. It is believed that a process design that 
produces parts within the acceptable ranges of all of the objective 
criteria would be preferable.

Conventional wisdom will dictate that a designed experiment be 
analyzed separately using the readings for each of the objectives 
(criteria of evaluations). This way, four separate analyses will have to 
be performed and optimum design conditions determined. Because 
each of these optimums is based only on one objective, there is no 
guarantee that they all will prescribe the same factor levels for the 
optimum condition. To release the design, however, only one com-
bination of factor levels is desired. Such design must also satisfy all 
objectives in a manner consistent with the consensus priority estab-
lished by the project team members.

Combining all of the evaluation criteria into a single index (OEC), 
which includes the subjective as well as the objective evaluations, and 
also incorporates the relative weightings of the criteria, may produce 
the design being sought. Of course, even if the experiment is analyzed 
using the overall evaluation criteria (OEC), separate analysis may 
still be performed for individual objectives.

Discussions and investigations into possible causes of the sub-
quality parts revealed many variables (not all are necessarily factors), 
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such as: (a) chemical ratio, (b) mold temperature, (c) lid close time, 
(d) pour weight, (e) discoloration of surface, (f) humidity, (g) index-
ing, (h) flow rate, (i) flow pressure, (j) nozzle cleaning time, (k) type 
of cleaning agent, and so on. Most project team members suspect 
that there are interactions between the chemical ratio and the pour 
weight, and between the chemical ratio and the flow rate. Past studies 
also indicated possible nonlinearity in the influence of the chemical 
ratio, and thus, four levels of this factor are also desirable for the 
experiment. But because there have been no scientific studies done 
in the recent past, any objective evidence of interaction or nonlin-
earity is not available. Because of the variability from part to part, it 
is a common practice to study a minimum of three samples for any 
measurements. The funding and time available for the project is such 
that only 30 to 35 samples can be molded. (Your plan and answer 
may vary from others’.)
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APPLICATION BENCHMARKS

Experiments designed and carried out according to the Taguchi 
methodology are generally referred to as case studies. Perhaps 
they are called case studies to indicate that they are well planned 
experiments and not simply a few tests to investigate the effects 
of varying one or more factors at a time. The term case study
may also be used to signify that such planned experiments have 
been fruitfully carried out, that the results have been analyzed to 
determine the optimum combination of the factors under study, 
and that tests to confirm the optimum conditions have been con-
ducted. But what does a case study look like? What are the steps 
to be followed in completing a case study?

In Chapters 5 and 6, the mechanics of the Taguchi design of 
experiments and the procedure for the analysis of the experi-
mental data were discussed in detail. Those chapters included 
several application examples (case studies). The examples in 
this chapter are representative of practical problems the author 
has encountered during his associations with various industries 
and clients.

A typical application of the method will include the following 
five major steps (see also Figure B-1):

1. A brainstorming session
2. Designing the experiment
3. Conducting the experiment
4. Analyzing the results
5. Running the confirmation test



226 A Primer on the Taguchi Method

Brainstorming for Taguchi experiments is described in Chapter 
8. Brainstorming is an essential element of a Taguchi case study. 
When this step is completed, the planning is done. Each of the 
experimental situations may demand a unique quality objective. 
What are the attributes of the quality characteristics? In what 
manner should the results be monitored? How many factors should 
be included in the study? These and many other pertinent ques-
tions are answered in the brainstorming session. Brainstorming 
was discussed in detail in Chapter 8. In this chapter, the remain-
ing four steps of the Taguchi methodology will be clarified by the 
following examples. In the solutions of these examples, extensive 
use is made of computer software [7], which computes results 
following procedures described in Chapters 5 and 6.

APPLICATION EXAMPLES, INCLUDING DESIGN AND ANALYSIS

Example 9-1
Engine Valve Train Noise Study

An experiment is to be designed to study the influence of six fac-
tors, which were identified during brainstorming as influencing the 
noise emitted by the valve train of a newly developed engine. Each 
factor is assigned two levels. Brainstorming concluded that interac-
tion effects were much less important than the main effects.

Solution—Example 9-1

Because there are six two-level factors, the smallest array is 
L8. Because interactions are insignificant, the six factors can be 
assigned to the six of the seven columns in any order desired. The 
factors involved and their levels are shown in Table 9-1(a).

Assume that during the brainstorming session the quality 
characteristics and the methods of measurement were also deter-
mined, in addition to the factors and levels. Based on these criteria, 
certain key elements of the test plan are described in Table 9-1(a) 
using the principles of the design of experiments. These are shown 
under the headings “Note,” “Objective,” and “Characteristic.” 
For this experiment, the level of the noise was to be measured in 
terms of some noise index on a scale of 0 to 100. The index was 
so defined that its smaller value was always desirable.
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The L8 array is shown in Table 9-1(b). Note that only six col-
umns define the test condition, with the zeros in the unused column 
(column 7) showing that no condition is implied. The two-level ar-
ray, L8, describes eight trial conditions. The design may be created 
manually, but a computer program will perform such computations 
in a matter of seconds and without mathematical errors.

The results of the eight trial conditions, with one run per trial 
condition, are shown in Table 9-2(a). Examples in this chapter 
utilized computer software [7], which displays up to six repetitions 
and their averages. These observed results are used to compute 
the main effects of the individual factors [Table 9-2(b)]. Because 

Table 9-1. Engine valve train noise study (Design)—Example 9-1
(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Valve guide clearance Low High

2 Upper guide length Smaller Larger

3 Valve geometry Type 1 Type 2

4 Seat concentricity Quality 1 Quality 2

5 Lower guide length Location 1 Location 2

6 Valve face runout Runout type 1 Runout type 2

7 (Unused)

Note: Six variables all at two levels studied.
Objective: Determine design configuration for least noise.
Characteristic: Smaller is better (measured in terms of noise index).

(b) L8 Orthogonal Array Used for Experiment

COLUMN
TRIAL

1 2 3 4 5 6 7

Trial 1 1 1 1 1 1 1 0

Trial 2 1 1 1 2 2 2 0

Trial 3 1 2 2 1 1 2 0

Trial 4 1 2 2 2 2 1 0

Trial 5 2 1 2 1 2 1 0

Trial 6 2 1 2 2 1 2 0

Trial 7 2 2 1 1 2 2 0

Trial 8 2 2 1 2 1 1 0
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Table 9-2. Original data and their averages (Results and analysis)—      
Example 9-1

(a) Original Observations and Their Averages
Quality Characteristic: Smaller is Better
Results: Up to Six Repetitions Shown 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       AVERAGE

 1 45.00      45.00

 2 34.00      34.00

 3 56.00      56.00

 4 45.00      45.00

 5 46.00      46.00

 6 34.00      34.00

 7 39.00      39.00

 8 43.00      43.00

(b) Main Effects      

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Valve guide clearance 45.00 40.50 –4.50 00.00 00.00

 2 Upper guide length 39.75 45.75 6.00 00.00 00.00

 3 Valve geometry 40.25 45.25 5.00 00.00 00.00

 4 Seat concentricity 46.50 39.00 –7.50 00.00 00.00

 5 Lower valve length 44.50 41.00 –3.50 00.00 00.00

 6 Valve face runout 44.75 40.75 –4.00 00.00 00.00

(c) ANOVA Table      

 SUM OF   
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Valve guide clear. (1) (40.50) Pooled

 2 Upper guide length 1   72.00 72.00 2.011 9.96

 3 Valve geometry (1) (50.00) Pooled

 4 Seat concentricity 1 112.50 112.50 3.142 21.10

 5 Lower guide length (1) (24.50) Pooled

 6 Valve face runout (1) (32.00) Pooled

All other/error 5 179.00 35.80 68.94

Total:   7 363.50   100.00

Note: Insignificant factorial effects are pooled as shown (   ).
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the factors have only two levels, the main effects are shown under 
the two columns marked Level 1 and Level 2. The third column 
labeled (L2 – L1) contains the difference between the main effects 
at Level 1 and Level 2. A minus sign (in the difference column) 
indicates a decrease in noise as the factor changes from Level 1 to 
Level 2. A positive value, on the other hand, indicates an increase 
in noise. A quick inspection of the difference column permits 
selection of the optimum combination, for example, the “smaller 
is better” characteristic. A negative sign in the column (L2 – L1)
indicates Level 2 of the factor is desirable, while a positive value 
indicates Level 1 is the choice. This quick inspection is a sufficient 
test only when two levels are involved and when all factors are 
considered significant.

If the desired characteristic is “bigger is better,” then the level 
selection criteria will be the reverse of the scheme given above; 
positive values indicate Level 2, and all negative values will in-
dicate the choice of Level 1 for the optimum condition. In this 
example with all factors, the optimum condition for “smaller is 
better” is levels 2, 1, 1, 2, 2, and 2 for factors in columns 1 through 
6, respectively. The sign (±) directs the selection of levels, while 
the magnitude suggests the strength of the influence of the factor. 
The quantitive measure of the influence of individual factors is 
obtained from ANOVA [Table 9-2(c)].

ANOVA follows procedures outlined in Chapter 6. No new data 
or decisions on the part of the experimenter are required. This 
is an ideal situation for standard computer routines. The results 
of ANOVA are shown in Table 9-2(c). A review of the percent 
column shows that Upper Guide (9.96%) and Seat Concentricity 
(21.10%) are significant. The other insignificant factors are pooled 
(combined) with the error term. Based on information from the 
ANOVA Table 9-2(c), the mean performance at optimum condi-
tion and the confidence interval are calculated as shown in Tables 
9-3(a) and 9-3(b), respectively.

The last step in the analysis is to estimate the performance at the 
optimum condition. Normally only the significant factors are used 
for this estimate. An examination of main effects indicates which 
levels will be included in the optimum condition. In addition, ANOVA 
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indicates [by the percentage column in Table 9-2(c)] the relative 
influence of each factor. Thus, all of the necessary information for 
determination of the optimum condition and the expected value of 
the response at this condition is available. No new information is 
necessary to calculate the performance at the optimum condition.

Example 9-2
Study of Crankshaft Surface Finishing Process

An engine was found to have an unusually high rate of crank-
shaft bearing failures. Engineers identified the crankshaft surface 
finish as the root cause. A brainstorming session with the engineers 

Table 9-3. Engine valve t rain noise s tudy                                          
 (Optimum and confidence interval)—Example 9-1

(a) Estimate of Optimum Condition of Design/Process:
For Smaller is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Upper guide length Smaller 1 –3.0000

Seat concentricity Quality 2 –3.7500

Contribution from all factors (total) –6.75

Current grand average of performance 42.75

Expected result at optimum condition 36.00

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.

(b) Confidence Interval

Computing F function for 1 and 5 at 90% confidence level.
Confidence Interval (C.I.) is expressed as:

C.I.
F n V

N
e

e

1 2,

where F(n1, n2) =  computed value of F with n1 = 1, n2 = error DOF
at a desired confidence level

 Ve = error variance
Ne =  effective number of replications

Based on: F =  3.2999999, n1 = 1, n2 = 5, Ve = 35.8, Ne = 2.6667 [from 8/(1+2)]

The confidence interval C.I. = ±6.656011, which is the variation of the estimated result 
at the optimum condition; that is, the mean of the result, m, lies between (m + C.I.) and 
(m – C.I.) at 89.93% confidence level.
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and the technicians involved in design and manufacturing activi-
ties resulted in the selection of six factors that were considered 
to have a major influence on the quality of the surface finish. The 
Taguchi approach of experimental design was considered an effec-
tive way to optimize the process.

The brainstorming also identified two levels for each factor and a 
likely interaction between two of the factors. The group decided that 
the quality characteristic of the surface finish should be measured 
in terms of durability (life) under simulated laboratory tests.

Solution—Example 9-2

With six factors and one interaction involved in this study, an 
L8 orthogonal array (OA) is suitable for the experimental design. 
The first step is to decide where to assign the interacting factors 
and which column to reserve for their interaction. The table of 
interaction (Table A-6) for two-level orthogonal arrays shows that 
columns 1, 2, and 3 form an interacting group. The two interact-
ing factors are therefore assigned to columns 1 and 2. Column 3 
is kept aside for their interaction. The remaining four factors are 
then assigned to any of the four remaining columns. The completed 
design, with descriptions of factors, their levels, and the orthogonal 
array, are shown in Tables 9-4(a) and 9-4(b). Eight crankshafts 
were fabricated to the specifications described by the eight trial 
conditions. Each sample was tested for durability (life). Because 
longer life was desirable, the quality characteristic applicable in 
this case was “bigger is better.”

The observed durability, the main effects, and the unpooled 
ANOVA are shown in Table 9-5. The study of the main effects in-
dicates some interaction between the factors. This is shown by the 
magnitude 1.25 in the column labeled (L2 – L1) in Table 9-5(b). This 
value is of the same order of magnitude as the values 3.25, –6.25, 
4.25, and so on. But is the interaction significant? The answer to 
this question can be obtained from the percentage column of the 
ANOVA table [Table 9-5(c)]. The interaction under column 3 is 
only 0.74%. Contributions below 5% are generally not considered 
significant. The interaction and the factor in column 5, which has 
1.46 in the percentage column, are pooled. The pooled ANOVA is 
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Table 9-4. Study of crankshaft surface finishing process (Design)—      
Example 9-2

(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Roundness (lobing) 700 1600

2 Lay direction (cross) Least Most

3 Interaction N/A

4 Tp (process index) 65% 90%

5 Taper .00025 .0005

6 Waviness Lower limit Upper limit

7 Shape factor .0003 .0003

Note: Interaction between roundness and lay direction.
Objective: Determine best grinding parameters.
Characteristic: Bigger is better (bearing durability life).

(b) L8 Orthogonal Array Used for Experiment

COLUMN
TRIAL

1 2 3 4 5 6 7

Trial 1 1 1 1 1 1 1 1

Trial 2 1 1 1 2 2 2 2

Trial 3 1 2 2 1 1 2 2

Trial 4 1 2 2 2 2 1 1

Trial 5 2 1 2 1 2 1 2

Trial 6 2 1 2 2 1 2 1

Trial 7 2 2 1 1 2 2 1

Trial 8 2 2 1 2 1 1 2

shown in Table 9-6(a). Observe that upon pooling the percentage 
values the significant factors are adjusted slightly.

In estimating performance at the optimum, only significant fac-
tors are used. As in Table 9-6(b), the expected improvement in per-
formance is 14.875 over the current average of performance (44.125). 
Because the interaction [Table 9-6(b)] has little significance, it is not 
considered in the selection of levels for the optimum condition.
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Table 9-5. Crankshaft surface finishing process                                  
(Main effects and ANOVA)—Example 9-2

(a) Original Observations and Their Averages
Quality Characteristic: Bigger is Better
Results: Up to Six Repetitions Shown 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       AVERAGE

 1 34.00      34.00

 2 56.00      56.00

 3 45.00      45.00

 4 35.00      35.00

 5 46.00      46.00

 6 53.00      53.00

 7 43.00      43.00

 8 41.00      41.00

(b) Main Effects      

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Roundness (lobing) 42.50 45.75 3.25 00.00 00.00

 2 Lay direction 47.25 41.00 –6.25 00.00 00.00

 3 Interaction 43.55 44.75 1.25 00.00 00.00

 4 Tp (process index) 42.00 46.25 4.25 00.00 00.00

 5 Taper 43.25 45.00 1.75 00.00 00.00

 6 Waviness 39.00 49.25 10.25 00.00 00.00

 7 Shape factor 41.25 47.00 5.75 00.00 00.00

(c) ANOVA Table      

 SUM OF   
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Roundness 1 21.13 21.13   5.02

 2 Lay direction 1   78.13 78.13   18.56

 3 Interaction 1 3.13 3.13   0.74

 4 Tp (process index) 1 36.13 36.13   8.58

 5 Taper 1 6.13 6.13   1.46

 6 Waviness 1 210.13 210.13   49.93

 7 Shape factor 1 66.13 66.13   15.71

All other/error 0

Total:   7 420.91   100.00
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Example 9-3
Automobile Generator Noise Study

Engineers identified one four-level factor and four two-level 
factors for experimental investigation to reduce the operating 
noise of a newly released generator. Taguchi methodologies were 
followed to lay out the experiments and analyze the test results.

Table 9-6. Crankshaft surface finishing process                                
(Pooled ANOVA and optimum)—Example 9-2

(a) ANOVA Table      
 SUM OF   

 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Roundness 1 21.13 21.13 4.57 3.92

 2 Lay direction 1   78.13 78.13 16.89 17.46

 3 Interaction (1) (3.13) Pooled

 4 Tp (process index) 1 36.13 36.13 7.81 7.48

 5 Taper (1) (6.13) Pooled

 6 Waviness 1 210.13 210.13 45.43 48.83

 7 Shape factor 1 66.13 66.13 14.30 14.61

All other/error 2 9.25 4.63 7.69

Total:   7 420.91   100.00

Note: Insignificant factorial effects are pooled as shown (   ).

(b) Estimate of Optimum Condition of Design/Process:
For Bigger is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Roundness (lobing) 1600 2 1.6250

Lay direction (cross) Least 1 3.1250

Tp (process index) 90% 2 2.1250

Waviness Upper limit 2 5.1250

Shape factor .0003 2 2.8750

Contribution from all factors (total) 14.875

Current grand average of performance 44.125

Expected result at optimum condition 59.00

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.
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Solution—Example 9-3

The factors in this example present a mixed-level situation. 
Although experiment design is simplified if all factors have the 
same level, it is not always possible to compromise the factor level. 
For instance, if a factor influence is believed to be nonlinear, it 
should be assigned three or more levels. The factor and its influ-
ence are assumed to be continuous functions. If, however, the 
factor assumes discrete levels such as design type 1, design type 
2, and so on, then the influence is a discrete function, and each 
discrete step (level) must be incorporated in the design. The four-
level factor in the example is discrete. Because the four-level factor 
has 3 DOF, and four two-level factors each have 1 DOF, the total 
DOF for the experiment is 7. An L8 with seven two-level columns 
and 7 DOF was selected for the design. The first step provides for 
the four-level factor. Columns 1, 2, and 3 of L8 are used to prepare 
a four-level column. This new four-level column now replaces col-
umn 1 and is assigned to the four-level factor. As columns 2 and 3 
were used to prepare column 1 as a four-level column, they cannot 
be used for any other factor. Thus, the four two-level factors are 
assigned to the remaining columns 4, 5, 6, and 7. The design and 
the modified OA are shown in Tables 9-7(a) and 9-7(b).

One run at each trial condition was tested in the laboratory, 
and the performance was measured in terms of a noise index. 
The index ranged between 0 (low noise) and 100 (loud noise). The 
lower value of this index was desirable. The data and calculated 
main effects are shown in Tables 9-8(a) and 9-8(b), respectively. 
Note that the four-level factor in column 1 (Casement Structure) 
has its main effects at the four levels. This factor has 3 DOF 
as noted in the ANOVA table [Table 9-9(a)] under the column 
marked DOF.

The ANOVA table clearly shows that the factor in column 6 
(Contact Brushes) has the smallest sum of squares and hence the 
least influence. This factor is pooled and the new ANOVA is in Table 
9-9(a). Using the significant contributors, the estimated performance 
at the optimum condition was calculated as 49.375. In this case, the 
optimum condition is trial 1 (Levels 1 1 1 1 1). The result for trial 1 
was 50 [Table 9-8(a)]. The difference between the trial result and the 
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Table 9-7. Automobile generator noise (Design)—Example 9-3
(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Casement structure Present Textured Ribbed New

2 (Unused)

3 (Unused)

4 Air gap Present Increase

5 Impregnation Present type Harder type

6 Contact brush Type 1 Type 2

7 Stator structure Present 
design

Epoxy
coated

Note: One four-level and four two-level factors studied.
Objective: Determine generator design parameters for least noise.
Characteristic: Smaller is better (measured in predefined index).

(b) L8 Orthogonal Array Used for Experiment

COLUMN
TRIAL

1 2 3 4 5 6 7

Trial 1 1 0 0 1 1 1 1

Trial 2 1 0 0 2 2 2 2

Trial 3 2 0 0 1 1 2 2

Trial 4 2 0 0 2 2 1 1

Trial 5 3 0 0 1 2 1 2

Trial 6 3 0 0 2 1 2 1

Trial 7 4 0 0 1 2 2 1

Trial 8 4 0 0 2 1 1 2

estimated optimum performance (49.375) resulted from the dropping 
of the minor effect of the contact brush factor from the estimate.

Example 9-4
Engine Idle Stability Study

An engine development engineer identified three adjustment pa-
rameters controlling the idle performance of an engine. Each of the 
factors is to be studied at three levels to determine the best setting 
for the engine. A Taguchi experiment design is to be utilized.
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Table 9-8. Automobile generator noise (Main effects)—Example 9-3
(a) Original Observations and Their Averages
Quality Characteristic: Smaller is Better
Results: Up to Six Repetitions Shown 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       AVERAGE

 1 50.00      50.00

 2 62.00      62.00

 3 70.00      70.00

 4 75.00      75.00

 5 68.00      68.00

 6 65.00      65.00

 7 65.00      65.00

 8 74.00      74.00

(b) Main Effects

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Casement structure 56.00 72.50 16.50 66.50 69.50

 4 Air gap 63.25 69.00 5.75 00.00 00.00

 5 Impregnation 64.75 67.50 2.75 00.00 00.00

 6 Contact brush 66.75 65.50 –1.25 00.00 00.00

 7 Stator structure 63.75 68.50 4.75 00.00 00.00

Solution—Example 9-4

The smallest three-level OA, L9, has four three-level columns. 
With three three-level factors in this study, the L9 is appropriate 
for the design. The factors are placed in the first three columns, 
leaving the fourth column unused. The factors, their levels, and 
the modified OA are shown in Tables 9-10(a) and 9-10(b).

The performance of the engine tested under various trial condi-
tions was measured in terms of the deviation of the speed from a 
nominal idle speed. A smaller deviation represented a more stable 
condition. Three separate observations were recorded for each trial 
condition, as shown in Table 9-11(a). The signal-to-noise (S/N) 
ratio was used for the analysis of the results. The main effects, 
optimum condition, and ANOVA table are shown in Tables 9-11 
and 9-12. Based on the error DOF and variance, the confidence 
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interval of the estimated performance at optimum is also computed 
as shown in Table 9-12(b). The confidence interval (C.I.) value of 
±.3341 will mean that the estimated optimum performance (S/N 
ratio) will be −25.878 ± .3341 at 90% confidence level (89.77% as 
a result of numerical solution by computer software [7]).

Example 9-5 
Instrument Panel Structure Design Optimization

A group of analytical engineers undertaking the design of an 
instrument panel structure are to study the influence of five critical 

Table 9-9. Automobile generator noise (Pooled ANOVA and optimum)— 
Example 9-3

(a) ANOVA Table      
 SUM OF   

 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Casement structure 3 309.38 103.13 33.00 70.49

 4 Air gap 1 66.13 66.13 21.16 15.07

 5 Impregnation 1 15.13 15.13 4.84 3.45

 6 Contact brushes (1) (3.13) Pooled

 7 Stator structure 1 45.13 45.13 14.44 9.57

All other/error 1 3.13 3.12 4.98

Total:   7 438.88   100.00

Note: Insignificant factorial effects are pooled as shown (   ).

(b) Estimate of Optimum Condition of Design/Process:
For Bigger is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Casement structure Present design 1 –10.1250

Air gap Present gap 1 –2.8750

Impregnation Present type 1 –1.3750

Stator structure Present design 1 –2.3750

Contribution from all factors (total) –16.750

Current grand average of performance 66.125

Expected result at optimum condition 49.375

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.
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Table 9-10. Engine idle stability study (Design)—Example 9-4
(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Indexing –5 deg 0 deg +5 deg

2 Overlap area 0% 30% 60%

3 Spark advance 25 deg 30 deg 35 deg

4 (Unused)

Note: Three three-level factors studied.
Objective: Determine best engine setting.
Characteristic: Smaller is better (speed deviation).

(b) L9 Orthogonal Array Used for Experiment

COLUMN
TRIAL

1 2 3 4

Trial 1 1 1 1 0

Trial 2 1 2 2 0

Trial 3 1 3 3 0

Trial 4 2 1 3 0

Trial 5 2 2 1 0

Trial 6 2 3 2 0

Trial 7 3 1 2 0

Trial 8 3 2 3 0

Trial 9 3 3 1 0

structural modifications on the system. A finite element model of 
the total structure was available for a static stiffness analysis. The 
objective is to determine the best combination of design alterna-
tives. To reduce the number of computer runs, a Taguchi experi-
ment design was selected to determine the number and conditions 
of the computer runs necessary if each factor is to be studied at 
two levels. Two interactions are believed to be important.

Solution—Example 9-5

This investigation is an analytical simulation rather than 
a hardware experiment. The factors and levels shown in Table 
9-13(a) are used in an L9 OA to set up the simulation. Only one 
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Table 9-11. Engine idle stability study (Main effects and ANOVA)—        
Example 9-4

(a) Original Observations and Their S/N Ratios
Quality Characteristic: Smaller is Better
Results: Up to Six Repetitions Shown 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       S/N

 1 20.00 25.00 26.00    –27.54

 2 34.00 36.00 26.00    –30.19

 3 45.00 34.00 26.00    –31.10

 4 13.00 23.00 22.00    –25.96

 5 36.00 45.00 35.00    –31.81

 6 23.00 25.00 34.00    –28.87

 7 35.00 45.00 53.00    –33.06

 8 56.00 46.00 75.00    –35.60

 9 35.00 46.00 53.00    –33.12

(b) Main Effects      

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Indexing –29.61 –28.88 0.73 –33.93 00.00

 2 Overlap –28.85 –32.53 –3.69 –31.03 00.00

 3 Spark advance –30.67 –29.76 0.91 –31.99 00.00

(c) ANOVA Table      

 SUM OF   
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Indexing 2 44.636 22.318 932.80 61.26

 2 Overlap 2   20.541 10.271 429.27 28.15

 3 Spark advance 2 7.565 3.783 158.10 10.33

All other/error 2 0.05     0.26

Total:   8 72.79     100.00

run per trial condition is necessary because the computer results 
should not change with repetition. The observation (stiffness 
values), main effects, and optimum condition are shown in 
Tables 9-13(b), 9-14(a), and 9-14(b). Note that the estimate of 
optimum performance (25.25) is lower than the result (29.9) 
of Trial #7 as it represents a conservative value that uses only 
three significant factors.



Examples of Taguchi Case Studies 241

Table 9-12. Engine id le s tability s tudy                                              
 (Optimum and confidence interval)—Example 9-4

(a) Estimate of Optimum Condition of Design/Process:
For Smaller is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Indexing 0 deg 2 1.9256

Overlap 0% 1 1.9522

Spark direction 30 deg 2 1.0489

Contribution from all factors (total) 4.92667

Current grand average of performance –30.80556

Expected result at optimum condition –25.87889

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.

(b) Confidence Interval

Computing F function for 1 and 2 at 90% confidence level.
Confidence Interval (C.I.) is expressed as:

C.I.
F n V

N
e

e

1 2,

where F(n1, n2) =  computed value of F with n1 = 1, n2 = error DOF
at a desired confidence level

 Ve = error variance
Ne =  effective number of replications

Based on: F =  5.999996, n1 = 1, n2 = 2, Ve = 2.392578E,

                 Ne = 1.285714 [from 9/(1+6)]

The confidence interval C.I. = ±0.3341461, which is the variation of the estimated 
result at the optimum condition; that is, the mean of the result, m, lies between (m + C.I.) 
and (m – C.I.) at 89.77% confidence level.

Example 9-6
Study Leading to Selection of Worst-Case Barrier Test Vehicle

To assure that the design of a new vehicle complies with all 
of the applicable Federal Motor Vehicle Safety Standards (FM-
VSS) requirements, engineers involved in the crashworthiness 
development of a new vehicle design want to determine the worst 
combination of vehicle body style and options. This vehicle is to be 
used as the test specimen for laboratory validation tests instead of 
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(b) Original Observations and Their Averages
Quality Characteristic: Bigger is Better
Results: Up to Six Repetitions Shown 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       AVERAGE

 1 13.50      13.50

 2 14.00      14.00

 3 14.30      14.30

 4 13.10      13.10

 5 22.00      22.00

 6 18.00      18.00

 7 29.90      29.90

 8 16.00      16.00

Table 9-13. Instrument panel structure optimization (Design and data)—
Example 9-5

(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Front dash beam Solid Hollow

2 Understructure With Without

3 Interaction 1×2 N/A

4 Forward panel Current design New design

5 Interaction 1×4 N/A

6 Plenum structure Steel Plastic

7 Surface structure Baseline New

Note: Interactions 1×2 and 1×4 studied.
Objective: Determine structural parameters for maximum strength.
Characteristic: Bigger is better (measured in terms of stiffness).

subjecting several prototype vehicles with all available options and 
body styles to tests under all compliance conditions. Four two-level 
factors and one four-level factor were considered to have major 
influence on the performance. A Taguchi experimental design 
approach was followed.

Solution—Example 5-6

The design involved modifying a two-level column of an L8
into a four-level one. The process is similar to that described in 
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Example 7-3. The factors, their levels, and the modified OA are 
shown in Tables 9-15(a) and 9-15(b). The description of the trial 
conditions derived from the designed experiment served as the 
specifications for the test vehicle. For barrier tests, the specimens 
are prototype vehicles built either on the production line or are 
handmade, one-of-a-kind test vehicles. In either case, the cost for 
preparing the test vehicles could easily run in the hundreds of 
thousands of dollars. Proper specification, in a timely manner, is 
crucial to the cost effectiveness of the total vehicle development 
program. For the purpose of the tests, eight vehicles were built on 
the production line following the specifications that correspond 
to the eight trial conditions. These vehicles were barrier tested 
and the results recorded in terms of a predefined occupant injury 

Table 9-14. Instrument panel s tructure optimization                            
(Main effects and optimum)—Example 9-5

(a) Main Effects      

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Front dash beam –29.61 –28.88 0.73 –33.93 00.00

 2 Understructure –28.85 –32.53 –3.69 –31.03 00.00

 3 Interaction 1×2

 4 Forward panel

 5 Interaction 1×4

 6 Plenum structure

 7 Surface structure –30.67 –29.76 0.91 –31.99 00.00

(b) Estimate of Optimum Condition of Design/Process:
For Bigger is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Front dash beam Hollow 2 3.8750

Forward panel Current design 1 2.3250

Plenum structure Plastic 2 1.4500

Contribution from all factors (total) 7.64999

Current grand average of performance 17.64000

Expected result at optimum condition 25.25000

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.
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index. The results and the analyses are shown in Tables 9-16 and 
9-17. By using eight test vehicles, the engineers were able to learn 
the worst vehicle configuration. This information was then used 
to adhere to several of the compliance regulations.

Example 9-7
Airbag Design Study

Engineers involved in the development of an impact-sensi-
tive inflatable airbag for automobiles identified nine four-level 

Table 9-15. Select ion of w orst-case barrier vehicle (Design)—              
Example 9-6

(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Test type 0 deg F 30 deg R 30 deg L NCAP

2 (Unused)

3 (Unused)

4 Type of vehicle Style 1 Style 2

5 Powertrain Light duty Heavy duty

6 Roof structure Hard top Sunroof

7 Seat structure Standard Reinforced

Note: One four-level and four two-level factors studied.
Objective: Determine the worst vehicle/option combination.
Characteristic: Smaller is better (one or more injury criteria).

(b) L8 Orthogonal Array Used for Experiment

COLUMN
TRIAL

1 2 3 4 5 6 7

Trial 1 1 0 0 1 1 1 1

Trial 2 1 0 0 2 2 2 2

Trial 3 2 0 0 1 1 2 2

Trial 4 2 0 0 2 2 1 1

Trial 5 3 0 0 1 2 1 2

Trial 6 3 0 0 2 1 2 1

Trial 7 4 0 0 1 2 2 1

Trial 8 4 0 0 2 1 1 2
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factors as the major influences on performance. With this infor-
mation, Taguchi experimental design was used to determine the 
optimum design.

Table 9-16. Select ion of w orst-case barrier vehicle                              
(Main effects and ANOVA)—Example 9-6

(a) Original Observations and Their Averages
Quality Characteristic: Smaller is Better
Results: Up to Six Repetitions Shown 

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       AVERAGE

 1 45.00      45.00

 2 65.00      65.00

 3 38.00      38.00

 4 48.00      48.00

 5 59.00      59.00

 6 32.00      32.00

 7 36.00      36.00

 8 38.00      38.00

(b) Main Effects      

 COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Test type 55.00 43.00 –12.00 45.50 37.00

 4 Type of vehicle 44.50 45.75 1.25 00.00 00.00

 5 Powertrain 38.25 52.00 –13.75 00.00 00.00

 6 Roof structure 47.50 42.75 –4.75 00.00 00.00

 7 Seat structure 40.25 50.00 9.75 00.00 00.00

(c) ANOVA Table      

 SUM OF   
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Test type 3 336.38 336.38 4.648 27.71

 4 Type of vehicle (1) (3.13) Pooled

 5 Powertrain 1 378.13 378.13 15.674 37.15

 6 Roof structure (1) (45.13) Pooled

 7 Seat structure 1 190.13 190.13 7.881 17.42

All other/error 2 48.25 24.13 17.72

Total:   7 952.88   100.00

Note: Insignificant factorial effects are pooled as shown (   ).
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Table 9-17. Select ion of w orst-case barrier vehicle                             
(Optimum and confidence interval)—Example 9-6

(a) Estimate of Optimum Condition of Design/Process:
For Smaller is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Test type NCAP 4 –8.1250

Powertrain Light duty 1 –6.8750

Seat structure Standard 1 –4.8750

Contribution from all factors (total) –19.8750

Current grand average of performance 45.1250

Expected result at optimum condition 25.2500

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.

(b) Confidence Interval

Computing F function for 1 and 2 at 90% confidence level.
Confidence Interval (C.I.) is expressed as:

C.I.
F n V

N
e

e

1 2,

where F(n1, n2) =  computed value of F with n1 = 1, n2 = error DOF
at a desired confidence level

 Ve = error variance
Ne =  effective number of replications

Based on: F =  5.999996, n1 = 1, n2 = 2, Ve = 24.125,

Ne = 1.333333 [from 8/(1+5)]

The confidence interval C.I. = ±10.4

Solution—Example 9-7

Because the experiment involves nine four-level factors, an 
L32 with nine four-level columns and one two-level column was 
selected for the design. Because there is no two-level factor in this 
design, the two-level column (column 1) of the OA shown in Table 
9-18(b) is set to zero. The factors, their levels, and the analyses 
are shown in Tables 9-18(a) through 9-20(b). The study was done 
using a theoretical simulation of the system. The trial conditions 
were used to set up the input conditions for the computer runs. 
The results of the computer runs at each of the trial conditions 
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were recorded on a scale of 1 to 10 and are as shown with the OA 
(right-most column) in Table 9-18(b). The main effects and ANOVA 
are presented in Tables 9-19(a) and 9-19(b). The optimum vehicle 
option combination and confidence level of the design appear in 
Table 9-20(a) and 9-20(b).

Example 9-8
Transmission Control Cable Adjustment Parameters

A Taguchi experiment was conducted to determine the best 
parameters for the design of a transmission control cable. The engi-
neers identified one four-level factor and five two-level factors as well 
as three interactions among three of the five two-level factors.

Solution—Example 9-8
This experiment required both level of modification and inter-

action study. The total DOF for the experiment was 11 [(4−1) + 5 × 
(2−1) + 3 × (1×1)]. L12 has 11 DOF. However, it requires a special 
OA that cannot be used for interaction studies. L16 is selected for the 
design. The factors and their levels are described in Table 9-21(a). 
For a four-level column and for the three interactions, four groups 
of natural interaction columns are first selected. The sets selected 
are 1, 2, 3; 7, 8, 15; 11, 4, 15; and 12, 4, 8. Columns 1, 2, and 3 are 
used to upgrade column 1 into a four-level column. The other three 
sets are reserved for the interactions among the three factors as-
signed to columns 4, 8, and 15 such that interaction 4 × 15 is shown 
in column 11, interaction 4 × 8 in column 12, and interaction 8 × 
15 in column 7. The factor with four levels is assigned to column 
1, which is now a four-level column. The remaining two two-level 
columns are assigned to columns 5 and 6. Columns 9, 10, 13, and 
14 remain unused. The modified L16 and the factors assigned to 
the appropriate columns are shown in Table 9-21(a).

Example 9-9
Front Structure Crush Characteristics

The Taguchi design of experiments methodology was used 
to optimize the design of the basic load-carrying members of an 
automobile front structure. The development engineers were in-
terested in determining the best combination of designs with three 
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Table 9-18 (continued)
COLUMN
TRIAL

1 2 3 4 5 6 7 8 9 10
R1

Trial 25 0 3 1 3 3 1 2 4 4 2 6.00

Trial 26 0 3 2 4 4 2 1 3 3 1 5.00

Trial 27 0 3 3 1 1 3 4 2 2 4 4.00

Trial 28 0 3 4 2 2 4 3 1 1 3 5.00

Trial 29 0 4 1 3 4 2 4 2 1 3 6.00

Trial 30 0 4 2 4 3 1 3 1 2 4 7.00

Trial 31 0 4 3 1 2 4 2 4 3 1 8.00

Trial 32 0 4 4 2 1 3 1 3 4 2 4.50

Table 9-19. Airbag design study (Main effects and ANOVA)—Example 9-7

(a) Main Effects      

COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 2 Steering column rotation 6.19 6.13 –0.07 5.00 5.94

 3 Steering column crush 6.25 4.94 –1.32 6.00 6.06
stiffness

 4 Knee bolster stiffness 6.38 5.88 –0.50 5.25 5.75

 5 Knee bolster location 4.94 5.94 1.00 6.38 6.00

 6 Inflation rate 6.50 6.06 –0.44 4.94 5.75

 7 Development time 6.19 5.56 –0.63 6.38 5.13

 8 Vent size 5.63 6.56 0.93 5.06 6.00

 9 Bag size (E-7 mm) 5.88 5.19 –0.69 6.13 6.06

 10 Maximum bag pressure 6.63 5.50 –0.88 5.00 6.38

(b) ANOVA Table      

 SUM OF 
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

2 Steering column rotation (3) (7.313) Pooled

 3 Steering column crush (3) (8.438) Pooled
stiffness

 4 Knee bolster stiffness (3) (5.125) Pooled

 5 Knee bolster location 3 9.063 3.021 1.631 4.65

 6 Inflation rate 3 10.438 3.479 1.879 6.48

 7 Development time (3) (7.938) Pooled

 8 Vent size 3 9.563 3.188 1.721 5.32

 9 Bag size (E-7 mm) (3) (4.438) Pooled

 10 Maximum bag pressure 3 11.125 3.708 2.002 7.39

All other/error   19 35.19    1.85 76.17
Total:     31 75.38      100.00
Note: Insignificant factorial effects are pooled as shown (   ).
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(b) Confidence Interval

Computing F function for 1 and 19 at 90% confidence level.
Confidence Interval (C.I.) is expressed as:

C.I.
F n V

N
e

e

1 2,

where F(n1, n2) = computed value of F with n1 = 1, n2 = error DOF
at a desired confidence level

 Ve = error variance
Ne =  effective number of replications

Based on: F = 2.600, n1 = 1, n2 = 19, Ve = 1.851974,

Ne = 2.461539 [from 32/(1+12)]

The confidence interval C.I. = ±1.3

Table 9-20. Airbag design study (Optimum and confidence interval)— 
Example 9-7

(a) Estimate of Optimum Condition of Design/Process:
For Smaller is Better Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Knee bolster location 100 1 –0.8750

Inflation rate Rate 4 4 –0.0625

Vent size 1300 mm 3 –0.7500

Maximum bag pressure P3 3 –0.8125

Contribution from all factors (total) –2.5000

Current grand average of performance 5.8125

Expected result at optimum condition 3.3125

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.

factors, each of which had two alternatives. The performance of 
the structure was measured in terms of the deformation under 
a drop silo test. For the test variability, three samples at each 
configuration were tested.

Solution—Example 9-9
The factor descriptions and the analyses are shown in Tables 

9-22 and 9-23. The design and the analysis are straightforward. 
The analysis utilizes an S/N ratio with the “nominal is best” qual-
ity characteristic.
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Example 9-10 
Electronic Connector Spring Disengagement Force Study

A manufacturer of precision electronic switch assemblies was 
experiencing high rejects with one of its connectors. This con-
nector consists of insertion of a solid, screw-machined pin into a 
flexible sleeve. The design created a compliant sleeve to generate 
sufficient spring force between the sleeve and the gold-plated, 
stamped metal pin similar to that shown in Figure 9-1. The plant 
has been producing the pin for several years. But recently, for 
some causes unknown, there has been higher than acceptable vari-

(b) L4 Orthogonal Array Used for Experiment

COLUMN
TRIAL

1 2 3

Trial 1 1 1 1

Trial 2 1 2 2

Trial 3 2 1 2

Trial 4 2 2 1

Table 9-22. Front structure crush characteristics (Design and data)—    
Example 9-9

(a) Design Factors and Their Levels

COLUMN FACTORS LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4

1 Lower rail section Current Proposed

2 Upper rail geometry Open section Closed section

3 Cross member Present Reinforced

Note: Three two-level factors studied.
Objective: Determine best design for barrier crush.
Characteristic: Nominal is best (impact deformation).

(c) Original Observations and Their S/N Ratios
Quality Characteristic: Nominal is Best

 REPETITION R1 R2 R3 R4 R5 R6

 TRIAL       S/N

 1 12.00 14.00 11.00    –6.37

 2 18.00 16.00 15.00    –8.46

 3 14.00 15.00 15.00    –1.76

 4 19.00 18.00 15.00    –11.47
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ability. Precise automation and attention to detail in tool cutting 
fail to improve the situation. To seek a permanent solution, the 
production team launched a Taguchi experimental design study 
to optimize the process and reduce variability.

The project team dedicated an entire day to experiment plan-
ning to agree on the objective and identify factors. By consensus, 
the team selected seven factors from a “Paretoized” list of more 
than a dozen qualified factors. The production team also agreed 
that the spring disengagement force, which is a key characteristic 
for the part, will be used to measure the results.

Table 9-23. Front s tructure crush characteristics                                  
(Main effects, ANOVA, and optima)—Example 9-9

(a) Main Effects      

COLUMN FACTOR LEVEL 1 LEVEL 2 L2 – L1 LEVEL 3 LEVEL 4

 1 Lower rail section –7.42 –4.86 2.56 00.00 00.00

 2 Upper rail section –2.30 –9.97 –7.66 00.00 00.00

 3 Cross member –8.92 –3.35 5.57 00.00 00.00

(b) ANOVA Table      

 SUM OF 
 COLUMN FACTOR DOF SQUARES VARIANCE F PERCENT

 1 Lower rail section 1 6.554 6.554   6.81

 2 Upper rail section 1 58.676 58.676   60.96

 3 Cross member 1 31.025 31.025   32.23

All other/error 0
Total:   3 96.250     100.00

(c) Estimate of Optimum Condition of Design/Process:
For Nominal is Best Characteristic

FACTOR
DESCRIPTION

LEVEL
DESCRIPTION LEVEL CONTRIBUTION

Lower rail section Proposed design 2 1.2800

Upper rail section Open section 1 3.8300

Cross member Reinforced design 2 2.7850

Contribution from all factors (total) 7.8950

Current grand average of performance –6.1350

Expected result at optimum condition 1.7600

This estimate includes only those variables that have a significant contribution; that is, pooled variables 
are excluded from the estimate. Estimates may also be made with variables of choice.
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Solution—Example 9-10

The experiment was designed using a standard L-8 array by 
assigning seven two-level factors in the order shown (Table 9-24). 
Five sets of samples, with multiple fabricated parts in each set, 
were tested in each of the eight trial conditions. Description of 
an example trial condition (#3) is shown in Table 9-25. Upon 
completion of the tests, results (Table 9-26) were analyzed using 
S/N of results for the “bigger is better” quality characteristic. 
Computer software [7] was used to perform the analysis and 
draw conclusions.

Figure 9-1. Electronic connector switch component—Example 9-10

Table 9-24. Study factors and their levels—Example 9-10
FACTOR DESCRIPTION LEVEL 1 LEVEL 2

C: Machine setup Nominal With bushing

A: Spring gap 0.0185 in. 0.0215 in.

B: Crimp design Current design New design

D: Sleeve ID 0.050 in. 0.0507 in.

E: Spring contact radius 0.017 in. 0.022 in.

F: Metal hardness (spring, source) Brush NGK

G: Spring OD 0.0495 in. 0.0503 in.

Note: Interaction ignored and noise considered random.
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Basic computations of factor average effects (main effects), 
potential two-factor interactions and ANOVA are shown in Tables 
9-27 through 9-29 and Figure 9-2. Based on factor effects, the op-
timum condition and the expected performance in original units 
(force in oz.) are shown in Table 9-30 and Figure 9-3. Assuming the 
performance is on target, the variability reduction and expected 
cost savings can also be estimated (Figure 9-4). The following 
observations are derived from the analysis:

Table 9-25. Description of a n example t rial condition (3 of 8 )—            
Example 9-10

Trial condition 3 (random order for running this trial is 5)

FACTOR DESCRIPTION LEVEL DESCRIPTION LEVEL 1

C: Machine setup Nominal 1

A: Spring gap 0.0215 in. 2

B: Crimp design New design 2

D: Sleeve ID 0.050 in. 1

E: Spring contact radius 0.017 in. 1

F: Metal hardness (spring, source) NGK 2

G: Spring OD 0.0503 in. 2

Table 9-26. Experimental results and S/N for trials (Bigger is better)—  
Example 9-10

CONDITIONS SAMPLE 
#1

SAMPLE
#2

SAMPLE
#3

SAMPLE
#4

SAMPLE
#5

SAMPLE
#6

TRIAL S/N RATIO

1 1.57 1.69 1.685 1.74 1.821 4.584

2 3.335 3.425 3.62 2.815 2.773 9.933

3 1.991 2.036 2.428 2.521 3.037 7.31

4 1.27 1.295 1.303 1.29 1.192 2.062

5 3.275 3.735 4.167 4.132 2.915 10.982

6 1.288 1.256 1.342 1.286 1.277 2.204

7 2.091 1.986 1.927 1.925 1.97 5.92

8 1.348 1.5 1.425 1.345 1.418 2.945

Avg. = 5.742

All results: Avg. = 2.111, Std. dev. = .89
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Table 9-29. Relative factor influences (from ANOVA)—Example 9-10
COLUMN #/

FACTORS
DOF

(f)
SUM OF 

SQUARES (S)
VARIANCE

(V)
F RATIO

(F)
PURE SUM

(S )
PERCENT

P (%)

1  C: Machine setup (1) (.421) Pooled (CL = 100%)

2  A: Spring gap 1 11.2 11.2 44.193 10.947 13.231

3  B: Crimp design (1) (.085) Pooled (CL = *NC*)

4  D: Sleeve ID 1 16.971 16.971 66.959 16.717 20.205

5  E: Spring c. rad. 1 17.565 17.565 69.304 17.311 20.923

6  F: Metal hardness 1 2.872 2.872 11.332 2.618 3.165

7  G: Spring OD 1 33.621 33.621 132.656 33.368 40.33

Other/Error 2 .506 .253 2.146

Total: 7 82.738 100.00%

Table 9-28. Relative s trength of p resence of in teraction and                 
factor levels—Example 9-10

#
INTERACTING FACTOR PAIRS

(ORDER BASED ON SI) COLUMNS SI (%) COL. OPT.

1 C: Machine setup × B: Crimp design 1 × 3 83.74 2 [1,1]

2 C: Machine setup × F: Metal hardness 1 × 6 77.38 7 [1,2]

3 B: Crimp design × F: Metal hardness 3 × 6 71.2 5 [1,2]

4 B: Crimp design × D: Sleeve ID 3 × 4 58.46 7 [2,1]

5 A: Spring gap × E: Spring c. rad. 2 × 5 58.04 7 [1,2]

6 A: Spring gap × F: Metal hardness 2 × 6 55.17 4 [1,1]

7 C: Machine setup × D: Sleeve ID 1 × 4 50.43 5 [2,1]

8 C: Machine setup × E: Spring c. rad. 1 × 5 49.56 4 [2,2]

9 D: Sleeve ID × F: Metal hardness 4 × 6 44.82 2 [1,1]

10 A: Spring gap × G: Spring OD 2 × 7 41.95 5 [1,2]

11 B: Crimp design × G: Spring OD 3 × 7 41.53 4 [2,2]

Table 9 -27. A verage effect s of fa ctors (S/ N for b igger is  b etter)—            
Example 9-10

COLUMN #/FACTORS LEVEL 1 LEVEL 2 L2 – L1

1  C: Machine setup 5.972 5.513 –.46

2  A: Spring gap 6.926 4.559 –2.367

3  B: Crimp design 5.846 5.639 –.207

4  D: Sleeve ID 7.199 4.286 –2.914

5  E: Spring contact radius 4.261 7.224 2.963

6  F: Metal hardness (spring, source) 5.143 6.342 1.198

7  G: Spring OD 3.692 7.792 4.099
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Figure 9-2. Bar graph of relative factor influences (from ANOVA)—                
Example 9-10

Significant factor and interaction influences

40.3

2.1

(Date: 2/2/2009-File:DITECH0A.Q4W)
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Recreated from Qualitek-4 screenshot

Table 9-30. Optimum condition and performance (S/N)—Example 9-10
COLUMN #/FACTORS LEVEL DESCRIPTION LEVEL CONTRIBUTION

2  A: Spring gap 0.0185 in. 1 1.183

4  D: Sleeve ID 0.050 in. 1 1.456

5  E: Spring contact radius 0.022 in. 2 1.481

6  F: Metal hardness (spring, source) NGK 2 .599

7  G: Spring OD 0.0503 in. 2 2.05

Total contribution from all factors 6.769

Current grand average of performance 5.742

Expected result at optimum condition 12.511

• Most influential factor is G: Spring OD (Larger diameter 
is better for spring force, Table 9-27). Factor B: Crimp
Design has negligible effect on Spring Force.

• Factors with the most influence on average of Disengage-
ment Force are: G: Spring OD, E: Spring Contact Radius, 
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Figure 9-3. Expected performance at optimum in original units—Example 9-10

Figure 9-4. Plot showing variability and cost improvements—Example 9-10

Data Type:  S/N Ratio QC Type:  Bigger is Better

Estimate of expect results from S/N ratio
S/N = –10 Log (MSD) = 12.511

or   MSD = 10^[–(S/N)/10] = 0.056092
where

MSD = [(1/y1)^2 + (1/y2)^2 + ... + (1/yn)^2]/n
= [Avg. (1/yi)^2] = 1/Yexp^2

or Yexp = SQR(1/MSD)
Expected performance in QC units
(or overall evaluation criteria) is:

Yexp = 4.222 QC units
(Based on S/N = 12.511 at optimum)

Recreated from Qualitek-4 screenshot
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Table 9-31. Solution design and expected performance—Example 9-10
OPTIMUM DESIGN

C: Machine setup With bushing

A: Spring gap 0.0185 in.

B: Crimp design Either current or new design

D: Sleeve ID 0.050 in.

E: Spring contact radius 0.022 in.

F: Metal hardness (spring, source) NGK

G: Spring OD Lower end of 0.0499–0.0503 in.

Expected performance:
Average of disengagement force in above design expected to be 4.22 oz. of spring force.

D: Sleeve ID, and A: Spring Gap (in descending order of 
influence, Table 9-29).

• Factors that have the least influence are: B: Crimp Design, 
C: Machine Setup, and F: Metal Hardness. Levels for these 
factors are prescribed based on lower cost and ease of as-
sembly.

• Design the most favorable DESIGN for higher average of 
Spring Force is as shown in Table 9-31. The recommended 
design was confirmed and was found to consistently de-
liver 70% higher average spring force than that before the 
investigation.

For more examples with S/N analysis, noise factors, and OEC, 
readers are referred to [2–5, 8].
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ABBREVIATIONS AND SYMBOLS

A, B, ... variables used in the design of an experiment
Ai sum of observations under condition Ai (i = 1, 2, 3, ...)
 average of observations under condition Ai

C.I. confidence interval
DOE design of experiments
e experimental error
f, n degrees of freedom
F variance ratio
k a constant used in the expression for loss function
L the Taguchi loss function
L8 an orthogonal array that has eight experiments
LSL lower specification limit
MSD mean square deviation
N number of experiments
OA orthogonal array, L4, L8, L16, and so on
P percent contribution of a variable
S sum of squares
S  net/pure sum of squares
S/N signal-to-noise ratio
T sum of all observations
USL upper specification limit
V variance (mean square, S/f)
Y results measured in terms of quality characteristics; 

for example, cost, weight, length, surface finish.

 level of significance (among other usage)
 population mean
 population standard deviation
2 population variance

Ai
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GLOSSARY

ANOVA (Analysis of Variance)
 An analysis of variance is a table of information that displays

the contributions of each factor.
Controllable Factor
 A design variable that is considered to influence the response

and is included in the experiment. Its level can be controlled
by the experimenter.

Design of Experiment
 A systematic procedure to lay out the factors and conditions

of an experiment. Taguchi employs specific partial factorial
arrangements (orthogonal arrays) to determine the optimum
experiment design.

Factorial Experiment
 A systematic procedure in which all controllable factors except

one are held constant as the variable factor is altered discretely
or continuously.

Error
 Amount of variation in the response caused by factors other

than controllable factors included in the experiment.
Inner Array
 Describes the combination of control factors and layout of the

design of experiment.
Interaction
 Two factors are said to have interaction with each other if

the influence of one on the response function is dependent
on the value of the other.

Linear Graph
 A graphical representation of relative column locations of fac-

tors and their interactions. Linear graphs were developed by
Dr. Taguchi to assist in assigning different factors to columns
of the orthogonal array.

Loss Function
 A mathematical expression proposed by Dr. Taguchi to quan-

titatively determine the additional cost to society caused by
the lack of quality in a product. This additional cost is viewed
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as a loss to society and is expressed as a direct function of the
mean square deviation from the target value.

Noise Factors
 Factors that have an influence over a response but cannot be

controlled in actual applications. There are three types:
Outer noise: Consists of environmental conditions such as
humidity temperature, operators, and so on.
Inner noise: Deterioration of machines, tools, and parts.
Between-product noise: Variation from piece to piece.

Off-Line Quality Control
 The quality enhancement efforts in activities before produc-

tion, such as, upstream planning, R&D, system design, para-
metric design, tolerance design, loss function, and so on.

Orthogonal Array (OA)
 A set of tables used to determine the least number of experi-

ments and their conditions. “Orthogonal” means balanced.
Outer Array
 An orthogonal array that is used to define the conditions for

the repetitions of the inner array to measure the effects of
various noise factors. An experiment with outer arrays will
reduce product variability and sensitivity to noise factors.

Parameter Design
 Used to design a product by selecting the optimum condition

of parameter levels so that the product is least sensitive to
noise factors.

Quality Characteristic
 Measures the performance of a product or a process under

study. For example, for a plastic molding process, this could
be the strength of the molded piece; for a cake, this could be
a combination of taste, shape, and moistness.

Response
 A quantitative value of the measured quality characteristic,

for example, stiffness, weight, flatness.
Robustness
 Describes a condition in which a product or process is least

influenced by the variation of individual factors. To become
robust is to become less sensitive to variations.
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Signal Factor
 A factor that influences the average value but not the vari-

ability in response.
S/N (Signal-to-Noise) Ratio
 Ratio of the power of a signal to the power of the noise (error).

A high S/N ratio means that there is high sensitivity with the
least error of measurement. In Taguchi analysis using S/N
ratios, a higher value is always desirable regardless of the
quality characteristic.

System Design
 The design of a product or process using special Taguchi

techniques.
Taguchi Design
 A methodology to increase quality by optimizing system design,

parameter design, and tolerance design. This text deals with
system design.

Target Value
 A value that a product is expected to possess. Most often this

value is different from what a single unit actually exhibits.
For a 9-volt transistor battery, the target value is 9 volts.

Tolerance Design
 A sophisticated version of parametric design that is used

to optimize tolerance, reduce costs, and increase customer
satisfaction.

Variables (or Factors or Parameters)
 These words are used synonymously to indicate the control-

lable factors in an experiment. In the case of a plastic molding
experiment, molding temperature, injection pressure, set time,
and so on, are the factors.

Variation Reduction
 Variation in the output of a process produces nonuniformity

in the product and is perceived as an important criteria for
quality. Reduced variation increases customer satisfaction
and reduces warranty cost arising from variation. To achieve
better quality, a product must perform optimally and should
have less variation around the desired critical characteristic
for quality.



WHAT READERS ARE SAYING...

“…a clear, step-by-step guide to the Taguchi design of experi-
ments method. The careful descriptions, calculations and examples
demonstrate the versatility of these practical and powerful tools.”

— Fred Schenkelberg, consultant, FMS Reliability, Los Gatos,
Calif.

“Dr. Roy presents the theory and relates it to practical examples,
explaining difficult concepts in an understandable manner. This is an
easy-to-read, right-on-the-mark guide to understanding and applying
Taguchi robust design and DOE. Readers will find these techniques
extremely useful, practical and easily applied to the daily job.”

— George Li, process improvement manager, Research In Motion,
Waterloo, Ont.

“The book has a detailed discussion of Taguchi methods that are
not covered in great detail in many books on DOE.”

— Frederick H. Long, president, Spectroscopic Solutions, LLC,
Randolph, N.J.

“Dr. Roy’s name is instantly associated with Taguchi methodolo-
gies in the manufacturing industries. His skill set is also being recog-
nized for project management instruction. The new edition includes
more easy-to-follow descriptions and examples.”

— Andrea Stamps, engineering specialist, six sigma master black
belt, General Dynamics, Southfield, Mich.

“Research engineers, process development engineers, pilot
plant engineers, design engineers, national research labs and aca-
demic research laboratories should use this book extensively. It’s a 
practical textbook on how to maximize output with minimal use of 
resources.”

— Dr. Naresh Mahamuni, research associate, North Carolina
A&T State University, Greensboro, N.C.



“Dr. Roy has many years of practical experience helping engineers
understand and improve their engineering, reliability and problem-
solving skills using Dr. Taguchi’s ideas. He anticipates questions
engineers would ask and provides the needed information exactly
when it is needed.”

— Larry R. Smith, quality and reliability manager (retired), Ford
Motor Co., Dearborn, Mich.

“A large number of examples support the contents. Case studies
are enumerated, which is a strength of the book.”

— Dr. Pradeep Kumar, professor and head, Department of
Mechanical and Industrial Engineering, Indian Institute of
Technology Roorkee

“Dr. Roy’s book lists many application examples that can help
engineers use the Taguchi method effectively.”

— Dr. Side Zhao, control engineer, NACCO Materials Handling
Group, Portland, Ore.

“The author’s experience on the topic is what makes this book
very useful as a principal reference in teaching the Taguchi method
in quality engineering.”

— Dr. Carlos Díaz Ramos, research professor, Instituto Tecnológico
de Orizaba and Universidad Veracruzana, Mexico

“The author is able to explain concepts in a very knowledgeable
yet down-to-earth and systematic manner. The material is very well
organized.”

— Kush Shah, manager, alternative propulsion technology quality,
General Motors, LLC, Pontiac, Mich.

“This book is a valuable introductory text in Taguchi methods
with a number of illustrative examples and case studies that make
the concepts clearer than books with theory only.”

— Dr. R. Mahalinga Iyer, senior lecturer, Queensland University
of Technology, Brisbane, Queensland, Australia
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ORTHOGONAL ARRAYS, TRIANGULAR TABLES, AND LINEAR GRAPHS

Table A-1. Common orthogonal arrays**
ARRAY NUMBER OF FACTORS NUMBER OF LEVELS

L4 (23) 3 2

L8 (27) 7 2

L12 (211) 11 2

L16 (215) 15 2

L32 (231) 31 2

L9 (34) 4 3

* L18 (21, 37) 1
and 7

2
3

L27 (313) 13 3

L16 (45) 5 4

* L32 (21, 49) 1
and 9

2
4

L64 (421) 21 4

* Mixed-level arrays
** Orthogonal arrays from G. Taguchi and S. Konishi, Orthogonal Arrays and Linear Graphs—Tools for 
Quality Engineering, Dearborn, MI: American Supplier Institute, Inc., 1987.

261

Table A-2. Orthogonal arrays L4 and L8 (two-level)*

(a) (b)

COLUMN

CONDITION

L4 (23) L8 (27)

1 2 3 1 2 3 4 5 6 7

1 1 1 1 1 1 1 1 1 1 1 1

2 1 2 2 2 1 1 1 2 2 2 2

3 2 1 2 3 1 2 2 1 1 2 2

4 2 2 1 4 1 2 2 2 2 1 1

5 2 1 2 1 2 1 2

6 2 1 2 2 1 2 1

7 2 2 1 1 2 2 1

8 2 2 1 2 1 1 2

* Reprinted with permission of the American Supplier Institute, Inc.
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Figure A-3. Linear graphs for two-level orthogonal arrays

Figure A-1. Linear graph for L4
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Figure A-2. Linear graphs for L8
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Table A-4. Orthogonal arrays L32 (two-level, 31 factors)*

COLUMN
L32 (2

31)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CONDITION

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

3 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

4 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

5 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

6 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1

7 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

8 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2

9 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

10 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

11 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

12 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2

13 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

14 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2

15 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

16 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1

17 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

18 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

19 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1

20 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2

21 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1
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22 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

23 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

24 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1

25 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

26 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

27 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 1

28 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

29 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

30 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1

31 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

32 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2

* Reprinted with permission of the American Supplier Institute, Inc.
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Table A-5(a). Orthogonal arrays L64 (two-level)*

COLUMN
L64 (2

63)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CONDITION

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

5 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

6 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

7 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

8 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

9 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

10 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

11 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1

12 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1

13 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

14 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

15 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2

16 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2

17 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

18 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

19 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

20 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

21 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1
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22 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

23 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2

24 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2

25 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

26 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

27 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2

28 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2

29 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

30 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

31 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1

32 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1

33 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

34 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2

35 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

36 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

37 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

38 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

39 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2

40 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2

41 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

42 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

43 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

44 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

45 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

46 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

(continued)
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Table A-5(a). Orthogonal arrays L64 (two-level)* (continued)

COLUMN
L64 (2

63)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

CONDITION

47 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1

48 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1

49 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

50 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

51 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

52 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

53 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

54 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

55 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

56 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

57 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

58 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

59 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1

60 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1

61 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

62 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

63 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2

64 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2

* Reprinted with permission of the American Supplier Institute, Inc.
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Table A-5(b). Orthogonal array L64* [continues Table A-5(a)]

L64 (2
63)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1

1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2

2 2 2 2 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1

1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 2 2 2 1 1

2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2

(continued)
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Table A-5(b). Orthogonal array L64* (continued)

L64 (2
63)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2

2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1

1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2

1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1

1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1

1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1

2 2 1 1 1 1 2 2 1 1 2 2 2 2 1 1 1 1 2 2 2 2 1 1 2 2 1 1 1 1 2 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 1

1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1

2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2

2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1
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1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 2 1 2 1 2 1 2 1 1 1 2 1 2 1 2 1 2 2 1 2 1

1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1

2 1 2 1 1 2 1 2 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 2 1 2 1 1 2 1 2

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2

1 2 2 1 2 1 1 2 1 2 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1

1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1

2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2

1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2

1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1 2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2

2 1 1 2 1 2 2 1 1 2 2 1 2 1 1 2 1 2 2 1 2 1 1 2 2 1 1 2 1 2 2 1

* Reprinted with permission of the American Supplier Institute, Inc.
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Table A-6. Triangular table for two-level orthogonal arrays*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

(1) 3 2 5 4 7 6 9 8 11 10 13 12 15 14 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30

(2) 1 6 7 4 5 10 11 8 9 14 15 12 13 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29

(3) 7 6 5 4 11 10 9 8 15 14 13 12 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28

(4) 1 2 3 12 13 14 15 8 9 10 11 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27

(5) 3 2 13 12 15 14 9 8 11 10 21 20 23 22 17 16 19 18 29 28 31 30 25 24 27 26

(6) 1 14 15 12 13 10 11 8 9 22 23 20 21 18 19 16 17 30 31 28 29 26 27 24 25

(7) 15 14 13 12 11 10 9 8 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

(8) 1 2 3 4 5 6 7 24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23

(9) 3 2 5 4 7 6 25 24 27 26 29 28 31 30 17 16 19 18 21 20 23 22

(10) 1 6 7 4 5 26 27 24 25 30 31 28 29 18 19 16 17 22 23 20 21

(11) 7 6 5 4 27 26 25 24 31 30 29 28 19 18 17 16 23 22 21 20

(12) 1 2 3 28 29 30 31 24 25 26 27 20 21 22 23 16 17 18 19

(13) 3 2 29 28 31 30 25 24 27 26 21 20 23 22 17 16 19 18

(14) 1 30 31 28 29 26 27 24 25 22 23 20 21 18 19 16 17

(15) 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

(16) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(17) 3 2 5 4 7 6 9 8 11 10 13 12 15 14

(18) 1 6 7 4 5 10 11 8 9 14 15 12 13

(19) 7 6 5 4 11 10 9 8 15 14 13 12

(20) 1 2 3 12 13 14 15 8 9 10 11

(21) 3 2 13 12 15 14 9 8 11 10

(22) 1 14 15 12 13 10 11 8 9

(23) 15 14 13 12 11 10 9 8

(24) 1 2 3 4 5 6 7

(25) 3 2 5 4 7 6

(26) 1 6 7 4 5

(27) 7 6 5 4

(28) 1 2 3

(29) 3 2

(30) 1

* Reprinted with permission of the American Supplier Institute, Inc.
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Table A-7. Orthogonal arrays (three-level, L9 and L18)*

(a)

COLUMN

CONDITION

L9 (34)

1 2 3 4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

(b)

COLUMN

CONDITION

L18 (21 × 37)

1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1 1

2 1 1 2 2 2 2 2 2

3 1 1 3 3 3 3 3 3

4 1 2 1 1 2 2 3 3

5 1 2 2 2 3 3 1 1

6 1 2 3 3 1 1 2 2

7 1 3 1 2 1 3 2 3

8 1 3 2 3 2 1 3 1

9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1

11 2 1 2 1 1 3 3 2

12 2 1 3 2 2 1 1 3

13 2 2 1 2 3 1 3 2

14 2 2 2 3 1 2 1 3

15 2 2 3 1 2 3 2 1

16 2 3 1 3 2 3 1 2

17 2 3 2 1 3 1 2 3

18 2 3 3 2 1 2 3 1

Note: Like the L12 (2
11), this is a specially designed array. An interaction is built in between the first two 

columns. This interaction information can be obtained without sacrificing any other column. Interactions 
between three-level columns are distributed more or less uniformly to all the other three-level columns, 
which permits investigation of main effects. Thus, it is a highly recommended array for experiments.
* Reprinted with permission of the American Supplier Institute, Inc.
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Table A-10. Orthogonal arrays (four-level)*
L16 (45)

NO. 1 2 3 4 5

1 1 1 1 1 1

2 1 2 2 2 2

3 1 3 3 3 3

4 1 4 4 4 4

5 2 1 2 3 4

6 2 2 1 4 3

7 2 3 4 1 2

8 2 4 3 2 1

9 3 1 3 4 2

10 3 2 4 3 1

11 3 3 1 2 4

12 3 4 2 1 3

13 4 1 4 2 3

14 4 2 3 1 4

15 4 3 2 4 1

16 4 4 1 3 2

* Reprinted with permission of the American Supplier Institute, Inc.
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Table A-12. Triangular table for four-level orthogonal arrays*
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

3 2 2 2 7 6 6 6 11 10 10 10 15 14 14 14 19 18 18 18
(1) 4 4 3 3 8 8 7 7 12 12 11 11 16 16 15 15 20 20 19 19

5 5 5 4 9 9 9 8 13 13 13 12 17 17 17 16 21 21 21 20
1 1 1 10 11 12 13 6 7 8 9 6 7 8 9 6 7 8 9

(2) 4 3 3 14 15 16 17 14 15 16 17 10 11 12 13 10 11 12 13
5 5 4 18 19 20 21 18 19 20 21 18 19 20 21 14 15 16 17

1 1 11 10 13 12 7 6 9 8 8 9 6 7 9 8 7 6
(3) 2 2 16 17 14 15 17 16 15 14 13 12 11 10 12 13 10 11

5 4 21 20 19 18 20 21 18 19 19 18 21 20 15 14 17 16
1 12 13 10 11 8 9 6 7 9 8 7 6 7 6 9 8

(4) 2 17 16 15 14 15 14 17 16 11 10 13 12 13 12 11 10
3 19 18 21 20 21 20 19 18 20 21 18 19 16 17 14 15

13 12 11 10 9 8 7 6 7 6 9 8 8 9 6 7
(5) 15 14 17 16 16 17 14 15 12 13 10 11 11 10 13 12

20 21 18 19 19 18 21 20 21 20 19 18 17 16 15 14
1 1 1 2 3 4 5 2 5 3 4 2 4 5 3

(6) 8 7 7 14 16 17 15 10 13 11 12 10 12 13 11
9 9 8 18 21 19 20 18 20 21 19 14 17 15 16

1 1 3 2 5 4 5 2 4 3 4 2 3 5
(7) 6 6 17 15 14 16 12 11 13 10 13 11 10 12

9 8 20 19 21 18 21 19 18 20 16 15 17 14
1 4 5 2 3 3 4 2 5 5 3 2 4

(8) 6 15 17 15 14 13 10 12 11 11 13 12 10
7 11 18 20 19 19 21 20 18 17 14 16 15

5 4 3 2 4 3 5 3 3 5 4 2
(9) 16 14 15 17 11 12 10 13 12 10 11 13

19 20 18 21 20 18 19 21 15 16 14 17
1 1 1 2 4 5 3 2 5 3 4

(10) 12 11 11 6 8 9 7 6 9 7 8
13 13 12 18 21 19 20 14 16 17 15
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1 1 4 2 3 5 5 2 4 3

(11) 10 10 9 7 6 8 8 7 9 6
13 12 20 19 21 18 17 15 14 16

1 5 3 2 4 3 4 2 5
(12) 10 7 9 8 6 9 6 8 7

11 21 18 20 19 15 17 16 14
3 5 4 2 4 3 5 2

(13) 8 6 7 9 7 8 6 9
19 20 18 21 16 14 15 17

1 1 1 2 3 4 5
(14) 16 15 15 6 8 9 7

17 17 16 10 13 11 12
1 1 3 2 5 4

(15) 14 14 9 7 6 8
17 16 12 11 13 10

1 4 5 2 3
(16) 14 7 9 8 6

15 13 10 12 11
5 4 3 2

(17) 8 6 7 9
11 12 10 13

1 1 1
(18) 20 19 19

21 21 20
1 1

(19) 18 18
21 20

1
(20) 18

19
* Reprinted with permission of the American Supplier Institute, Inc.
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TAGUCHI EXPERIMENT FLOW DIAGRAM AND F-TABLES

Brainstorming
1. What are we after?
2.
3.
4.
5.

A

B

C

D

E

Design the experiments

Experiment 1 Experiment 2 Experiment X

Analysis of test results

Run confirmation test with optimum condition

Figure B-1. A Taguchi experiment flow diagram
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Table B-1. F-table F.10 (f1,f2), 90% confidence
f1 = number of degrees of freedom of numerator

f2 = number of degrees of freedom of denominator

f1

f2

1 2 3 4 5 6 7 8 9

1 39.864 49.500 53.593 55.833 57.241 58.204 58.906 59.439 59.858

2 8.5263 9.0000 9.1618 9.2434 9.2926 9.3255 9.3491 9.3668 9.3805

3 5.5383 5.4624 5.3908 5.3427 5.3092 5.2847 5.2662 5.2517 5.2400

4 4.5448 4.3246 4.1908 4.1073 4.0506 4.0098 3.9790 3.9549 3.9357

5 4.0604 3.7797 3.6195 3.5202 3.4530 3.4045 3.3679 3.3393 3.3163

6 3.7760 3.4633 3.2888 3.1808 3.1075 3.0546 3.0145 2.9830 2.9577

7 3.5894 3.2574 3.0741 2.9605 2.8833 2.8274 2.7849 2.7516 2.7247

8 3.4579 3.1131 2.9238 2.8064 2.7265 2.6683 2.6241 2.5893 2.5612

9 3.3603 3.0065 2.8129 2.6927 2.6106 2.5509 2.5053 2.4594 2.4403

10 3.2850 2.9245 2.7277 2.6053 2.5216 2.4606 2.4140 2.3772 2.3473

11 3.2252 2.8595 2.6602 2.5362 2.4512 2.3981 2.3416 2.3040 2.2735

12 3.1765 2.8068 2.6055 2.4801 2.3940 2.3310 2.2828 2.2446 2.2135

13 3.1362 2.7632 2.5603 2.4337 2.3467 2.2830 2.2341 2.1953 2.1638

14 3.1022 2.7265 2.5222 2.3947 2.3059 2.2426 2.1931 2.1539 2.1220

15 3.0732 2.6952 2.4898 2.3614 2.2730 2.2081 2.1582 2.1185 2.0862

16 3.0481 2.6682 2.4618 2.3327 2.2438 2.1783 2.1280 2.0880 2.0553

17 3.0262 2.6446 2.4374 2.3077 2.2183 2.1524 2.1017 2.0613 2.0284

18 3.0070 2.6239 2.4160 2.2858 2.1958 2.1296 2.0785 2.0379 2.0047

19 2.9899 2.6056 2.3970 2.2663 2.1760 2.1094 2.0580 2.0171 1.9836

20 2.9747 2.5893 2.3801 2.2489 2.1582 2.0913 2.0397 1.9985 1.9649

21 2.9609 2.5746 2.3549 2.2333 2.1423 2.0751 2.0232 1.9819 1.9480

22 2.9486 2.5613 2.3512 2.2193 2.1279 2.0605 2.0084 1.9668 1.9327

23 2.9374 2.5493 2.3387 2.2065 2.1149 2.0472 1.9949 1.9531 1.9189

24 2.9271 2.5383 2.3274 2.1949 2.1030 2.0351 1.9826 1.9407 1.9063

25 2.9177 2.5283 2.3170 2.1843 2.0922 2.0241 1.9714 1.9292 1.8947

26 2.9091 2.5191 2.3075 2.1745 2.0822 2.0139 1.9610 1.9188 1.8841

27 2.9012 2.5106 2.2987 2.1655 2.0730 2.0045 1.9515 1.9091 1.8743

28 2.8939 2.5028 2.2906 2.1571 2.0645 1.9959 1.9427 1.9001 1.8652

29 2.8871 2.4955 2.2831 2.1494 2.0566 1.9678 1.9345 1.8918 1.8560

30 2.8807 2.4887 2.2761 2.1422 2.0492 1.9803 1.9269 1.8841 1.8498

40 2.8354 2.4404 2.2261 2.0909 1.9968 1.9269 1.8725 1.8289 1.7929

60 2.7914 2.3932 2.1774 2.0410 1.9457 1.8747 1.8194 1.7748 1.7380

120 2.7478 2.3473 2.1300 1.9923 1.8959 1.8238 1.7675 1.7220 1.6843

2.7055 2.3026 2.0638 1.9449 1.8473 1.7741 1.7167 1.6702 1.6315
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(continued)

10 12 15 20 24 30 40 60 120

60.195 60.705 61.220 61.740 62.002 62.265 62.529 62.794 63.061 63.328

9.3916 9.4081 9.4247 9.4413 9.4496 9.4579 9.4663 9.4746 9.4829 9.4913

5.2304 5.2156 5.2003 5.1845 5.1764 5.1681 5.1597 5.1512 5.1425 5.1337

3.9199 3.8955 3.8689 3.8443 3.8310 3.8174 3.8036 3.7986 3.7753 3.7607

3.2974 3.2682 3.2380 3.2067 3.1905 3.1741 3.1573 3.1402 3.1228 3.1050

2.9369 2.9047 2.8712 2.8363 2.8183 2.8000 2.7812 2.7620 2.7423 2.7222

2.7025 2.6681 2.6322 2.5947 2.5723 2.5555 2.5351 2.5142 2.4928 2.4708

2.5380 2.5020 2.4642 2.4246 2.4041 2.3830 2.3614 2.3391 2.3162 2.2926

2.4163 2.3789 2.3396 2.2983 2.2768 2.2547 2.2320 2.2085 2.1843 2.1592

2.3226 2.2841 2.2435 2.2007 2.1784 2.1554 2.1317 2.1072 2.0818 2.0554

2.2482 2.2087 2.1671 2.1230 2.1000 2.0762 2.0516 2.0261 1.9997 1.9721

2.1878 2.1474 2.1049 2.0597 2.0360 2.0115 1.9861 1.9597 1.9323 1.9036

2.1376 2.0966 2.0532 2.0070 1.9827 1.9576 1.9315 1.9043 1.8759 1.8462

2.0954 2.0537 2.0095 1.9625 1.9377 1.9119 1.8852 1.8572 1.8280 1.7973

2.0593 2.0171 1.9722 1.9243 1.8890 1.8728 1.8454 1.8168 1.7867 1.7551

2.0281 1.9854 1.9399 1.8913 1.8656 1.8388 1.8108 1.7816 1.7507 1.7182

2.0009 1.9577 1.9117 1.8624 1.8362 1.8090 1.7805 1.7506 1.7191 1.6856

1.9770 1.9333 1.8868 1.8368 1.8103 1.7827 1.7537 1.7232 1.6910 1.6567

1.9557 1.9117 1.8647 1.8142 1.7873 1.7592 1.7298 1.6988 1.6659 1.6308

1.9367 1.8924 1.8449 1.7938 1.7667 1.7382 1.7083 1.6769 1.6433 1.6074

1.9197 1.8750 1.8272 1.7756 1.7481 1.7193 1.6890 1.6569 1.6228 1.5862

1.9043 1.8503 1.8111 1.7590 1.7312 1.7021 1.6714 1.6389 1.6042 1.5668

1.8903 1.8450 1.7964 1.7439 1.7159 1.6864 1.6554 1.6224 1.5871 1.5490

1.8775 1.8319 1.7831 1.7302 1.7019 1.6721 1.6407 1.6073 1.5715 1.5327

1.8548 1.8200 1.7708 1.7175 1.6890 1.6589 1.6272 1.5934 1.5570 1.5176

1.8550 1.8090 1.7596 1.7059 1.6771 1.6468 1.6147 1.5805 1.5437 1.5036

1.8451 1.7989 1.7492 1.6951 1.6662 1.6356 1.6032 1.5687 1.5313 1.4906

1.8359 1.7895 1.7395 1.6852 1.6560 1.6252 1.5925 1.5575 1.5198 1.4784

1.8274 1.7808 1.7306 1.6759 1.6465 1.6155 1.5825 1.5472 1.5090 1.4670

1.8195 1.7727 1.7223 1.6673 1.6377 1.6065 1.5732 1.5376 1.4989 1.4564

1.7627 1.7146 1.6624 1.6052 1.5741 1.5411 1.5056 1.4572 1.4248 1.3769

1.7070 1.6574 1.6034 1.5435 1.5107 1.4755 1.4373 1.3952 1.3476 1.2915

1.6524 1.6012 1.5450 1.4821 1.4472 1.4094 1.3676 1.3203 1.2646 1.1926

1.5987 1.5458 1.4871 1.4206 1.3832 1.3410 1.2951 1.2400 1.1686 1.0000



284 A Primer on the Taguchi Method

Table B-2. F-table F.05 (f1,f2), 95% confidence
f1 = number of degrees of freedom of numerator

f2 = number of degrees of freedom of denominator

f1

f2

1 2 3 4 5 6 7 8 9

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54

2 18.513 19.000 19.614 19.247 19.296 19.330 19.353 19.371 19.385

3 10.128 9.5521 9.2766 9.1172 9.0135 8.9406 8.8868 8.8452 8.8123

4 7.7086 6.9443 6.5914 6.3883 6.2560 6.1631 6.0942 6.0410 5.9988

5 6.6079 5.7861 5.4095 5.1922 5.0503 4.9503 4.8759 4.8183 4.7725

6 5.9874 5.1433 4.7571 4.5337 4.3874 4.2830 4.2066 4.1468 4.0990

7 5.5914 4.7374 4.3468 4.1203 3.9715 3.8660 3.7870 3.7257 3.6767

8 5.3177 4.4590 4.0662 3.8378 3.6875 3.5806 3.5005 3.4381 3.3881

9 5.1174 4.2565 3.8626 3.6331 3.4817 3.3738 3.2927 3.2296 3.1789

10 4.9646 4.1028 3.7083 3.4780 3.3258 3.2172 3.1355 3.0717 3.0204

11 4.8443 3.9823 3.5874 3.3567 3.2039 3.0946 3.0123 2.9480 2.8962

12 4.7472 3.8853 3.4903 3.2592 3.1059 2.9961 2.9134 2.8486 2.7964

13 4.6672 3.8056 3.4105 3.1791 3.0254 2.9153 2.8321 2.7669 2.7144

14 4.6001 3.7389 3.3439 3.1122 2.9582 2.8477 2.7642 2.6987 2.6458

15 4.5431 3.6823 3.2874 3.0556 2.9013 2.7905 2.7066 2.6408 2.5876

16 4.4940 3.6337 3.2389 3.0069 2.8524 2.7413 2.6572 2.5911 2.5377

17 4.4513 3.5915 3.1968 2.9647 2.8100 2.6987 2.6143 2.5480 2.4943

18 4.4139 3.5546 3.1599 2.9277 2.7729 2.6613 2.5767 2.5102 2.4563

19 4.3808 3.5219 3.1274 2.8951 2.7401 2.6283 2.5435 2.4768 2.4227

20 4.3513 3.4928 3.0984 2.8661 2.7109 2.5990 2.5140 2.4471 2.3928

21 4.3248 3.4668 3.0725 2.8401 2.6848 2.5727 2.4876 2.4205 2.3661

22 4.3009 3.4434 3.0491 2.8167 2.6613 2.5491 2.4638 2.3965 2.3419

23 4.2793 3.4221 3.0280 2.7955 2.6400 2.5277 2.4422 2.3748 2.3201

24 4.2597 3.4026 3.0088 2.7763 2.6207 2.5082 2.4226 2.3551 2.3002

25 4.2417 3.3852 2.9912 2.7587 2.6030 2.4904 2.4047 2.3371 2.2821

26 4.2252 3.3690 2.9751 2.7426 2.5868 2.4741 2.3883 2.3205 2.2655

27 4.2100 3.3541 2.9604 2.7278 2.5719 2.4591 2.3732 2.3053 2.2501

28 4.1960 3.3404 2.9467 2.7141 2.5581 2.4453 2.3593 2.2913 2.2360

29 4.1830 3.3277 2.9340 2.7014 2.5454 2.4324 2.3463 2.2782 2.2229

30 4.1709 3.3158 2.9223 2.6896 2.5336 2.4205 2.3343 2.2662 2.2107

40 4.0848 3.2317 2.8387 2.6060 2.4495 2.3359 2.2490 2.1802 1.1240

60 4.0012 3.1504 2.7581 2.5252 2.3683 2.2540 2.1665 1.0970 2.0401

120 3.9201 3.0718 2.6802 2.4472 2.2900 2.1750 2.0867 2.0164 1.9588

3.8415 2.9957 2.6049 2.3719 2.2141 2.0986 2.0096 1.9384 1.8799



Appendix B 285

(continued)

10 12 15 20 24 30 40 60 120

241.88 243.91 245.95 248.01 249.05 250.09 251.14 252.20 253.25 254.32

19.396 19.413 19.429 19.446 19.454 19.462 19.471 19.479 19.487 19.496

8.7855 8.7446 8.7029 8.6602 8.6385 8.6166 8.5944 8.5720 8.5494 8.5265

5.9644 5.9117 5.8578 5.8025 5.7744 5.7459 5.7170 5.6878 5.6581 5.6281

4.7351 4.6777 4.6188 4.5581 4.5272 4.4957 4.4638 4.4314 4.3984 4.3650

4.0600 3.9999 3.9381 3.8742 3.8415 3.8082 3.7743 3.7398 3.7047 3.6688

3.6365 3.5747 3.5108 3.4445 3.4105 3.3758 3.3404 3.3043 3.2674 3.2298

3.3472 3.2840 3.2184 3.1503 3.1152 3.0794 3.0428 3.0053 2.9669 2.9276

3.1373 3.0729 3.0061 2.9365 2.9005 2.8637 2.8259 2.7872 2.7475 2.7067

2.9782 2.9130 2.8450 2.7740 2.7372 2.6996 2.6609 2.6211 2.5801 2.5379

2.8536 2.7876 2.7186 2.6464 2.6090 2.5705 2.5309 2.4901 2.4480 2.4045

2.7534 2.6866 2.6169 2.5436 2.5055 2.4663 2.4259 2.3842 2.3410 2.2962

2.6710 2.6037 2.5331 2.4589 2.4202 2.3803 2.3392 2.2966 2.2524 2.2064

2.6021 2.5342 2.4630 2.3879 2.3487 2.3082 2.2664 2.2230 2.1778 2.1307

2.5437 2.4753 2.4035 2.3275 2.2878 2.2468 2.2043 2.1601 2.1141 2.0658

2.4935 2.4247 2.3522 2.2756 2.2354 2.1938 2.1507 2.1058 2.0589 2.0096

2.4499 2.3807 2.3077 2.2304 2.1898 2.1477 2.1040 2.0584 2.0107 1.9604

2.4117 2.3421 2.2686 2.1906 2.1497 2.1071 2.0629 2.0166 1.9681 1.9168

2.3779 2.3080 2.2341 2.1555 2.1141 2.0712 2.0264 1.9796 1.9302 1.8780

2.3479 2.2776 2.2033 2.1242 2.0825 2.0391 1.9938 1.9464 1.8963 1.8432

2.3210 2.2504 2.1757 2.0960 2.0540 2.0102 1.9645 1.9165 1.8657 1.8117

2.2967 2.2258 2.1508 2.0707 2.0283 1.9842 1.9380 1.8895 1.8380 1.7831

2.2747 2.2036 2.1282 2.0476 2.0050 1.9605 1.9139 1.8649 1.8128 1.7570

2.2547 2.1834 2.1077 2.0267 1.9838 1.9390 1.8920 1.8424 1.7897 1.7331

2.2365 2.1649 2.0889 2.0075 1.9643 1.9192 1.8718 1.8217 1.7684 1.7110

2.2197 2.1479 2.0716 1.9898 1.9464 1.9010 1.8533 1.8027 1.7488 1.6906

2.2043 2.1323 2.0558 1.9736 1.9299 1.8842 1.8361 1.7851 1.7307 1.6717

2.1900 2.1179 2.0411 1.9586 1.9147 1.8687 1.8203 1.7689 1.7138 1.6541

2.1768 2.1045 2.0275 1.9446 1.9005 1.8543 1.8055 1.7537 1.6981 1.6377

2.1646 2.0921 2.0148 1.9317 1.8874 1.8409 1.7918 1.7396 1.6835 1.6223

2.0772 2.0035 1.9245 1.8389 1.7929 1.7444 1.6928 1.6373 1.5766 1.5089

1.9926 1.9174 1.8364 1.7480 1.7001 1.6491 1.5943 1.5343 1.4673 1.3893

1.9105 1.8337 1.7505 1.6587 1.6084 1.5543 1.4952 1.4290 1.3519 1.2539

1.8307 1.7522 1.6664 1.5705 1.5173 1.4591 1.3940 1.3180 1.2214 1.0000
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Table B-3. F-table F.025 (f1,f2), 97.5% confidence
f1 = number of degrees of freedom of numerator

f2 = number of degrees of freedom of denominator

f1

f2

1 2 3 4 5 6 7 8 9

1 647.79 799.50 864.16 899.58 921.85 937.11 948.22 956.66 963.28

2 38.506 39.000 39.165 39.248 39.298 39.331 39.355 39.373 39.387

3 17.443 16.044 15.439 15.101 14.885 14.735 14.624 14.540 14.473

4 12.218 10.649 9.9792 9.6045 9.3645 9.1973 9.0741 8.9796 8.9047

5 10.007 8.4336 7.7636 7.3879 7.1464 6.9777 6.8531 6.7572 6.6810

6 8.8131 7.2598 6.5988 6.2272 5.9876 5.8197 5.6955 5.5996 5.5234

7 8.0727 6.5415 5.8898 5.5226 5.2852 5.1186 4.9949 4.8994 4.8232

8 7.5709 6.0595 5.4160 5.0526 4.8173 4.6517 4.5286 4.4332 4.3572

9 7.2093 5.7147 4.0781 4.7181 4.4844 4.3107 4.1971 4.1020 4.0260

10 6.9367 5.4564 4.8256 4.4683 4.2361 4.0721 3.9498 3.8549 3.7790

11 6.7241 5.2559 4.6300 4.2751 4.0440 3.8807 3.7586 3.6638 3.5879

12 6.5538 5.0959 4.4742 4.1212 3.8911 3.7293 3.6065 3.5118 3.4358

13 6.4143 4.9653 4.3472 3.9959 3.7667 3.6043 3.4827 3.3880 3.3120

14 6.2979 4.8567 4.2417 3.8919 3.6634 3.5014 3.3799 3.2853 3.2093

15 6.1995 4.7650 4.1528 3.8043 3.5764 3.4147 3.2934 3.1987 3.1227

16 6.1151 4.6867 4.0768 3.7294 3.5021 3.3406 3.2194 3.1248 3.0488

17 6.0420 4.6189 4.0112 3.6648 3.4379 3.2767 3.1556 3.0610 2.9849

18 5.9781 4.5597 3.9539 3.6083 3.3820 3.2209 3.0999 3.0053 2.9291

19 5.9216 4.5075 3.9034 3.5587 3.3327 3.1718 3.0509 2.9563 2.8800

20 5.8715 4.4613 3.8587 3.5147 3.2891 3.1283 3.0074 2.9128 2.8365

21 5.8266 4.4199 3.8188 3.4754 3.2501 3.0895 2.9686 2.9740 2.7977

22 5.7863 4.3828 3.7829 3.4401 3.2151 3.0546 2.9338 2.8392 2.7628

23 5.7498 4.3492 3.7505 3.4083 3.1835 3.0232 2.9024 2.8077 2.7313

24 5.7167 4.3187 3.7211 3.3794 3.1548 2.9946 2.8738 2.7791 2.7027

25 5.6864 4.2909 3.6843 3.3530 3.1287 2.9685 2.8478 2.7531 2.6766

26 5.6586 4.2655 3.6697 3.3289 3.1048 2.9447 2.8240 2.7293 2.6528

27 5.6331 4.2421 3.6472 3.3067 3.0628 2.9228 2.8021 2.7074 2.6309

28 5.6096 4.2205 3.6264 3.2863 3.0625 2.9027 2.7820 2.6872 2.6106

29 5.5878 4.2006 3.6072 3.2674 3.0438 2.8840 2.7633 2.6686 2.5919

30 5.5675 4.1821 3.5894 3.2499 3.0265 2.8667 2.7460 2.6513 2.5746

40 5.4239 4.0510 3.4633 3.1261 2.9037 2.7444 2.6238 2.5289 2.4519

60 5.2857 3.9253 3.3425 3.0077 2.7863 2.6274 2.5068 2.4117 2.3344

120 5.1524 3.8046 3.2270 2.8943 2.6740 2.5154 2.3948 2.2994 2.2217

5.0239 3.6889 3.1161 2.7858 2.5665 2.4082 2.2875 2.1918 2.1136



Appendix B 287

(continued)

10 12 15 20 24 30 40 60 120

968.63 976.71 984.87 993.10 997.25 1001.4 1005.6 1009.8 1014.0 1018.3

39.398 39.415 39.431 39.448 39.456 39.465 39.473 39.481 39.490 39.498

14.419 14.337 14.253 14.167 14.124 14.081 14.037 13.992 13.947 13.902

8.8439 8.7512 8.6565 8.5599 8.5109 8.4613 8.4111 8.3604 8.3092 8.2573

6.6192 6.5246 6.4277 6.3285 6.2780 6.2269 6.1751 6.1225 6.0693 6.0153

5.4613 5.3662 5.2687 5.1684 5.1172 5.0652 5.0125 5.9589 4.9045 4.8491

4.7611 4.6658 4.5678 4.4667 4.4150 4.3624 4.3089 4.2544 4.1989 4.1423

4.2951 4.1997 4.1012 3.9995 3.9472 3.8940 3.8398 3.7844 3.7279 3.6702

3.9639 3.8682 3.7694 3.6669 3.6142 3.5604 3.5055 3.4493 3.3918 3.3329

3.7168 3.6209 3.5217 3.4186 3.3654 3.3110 3.2554 3.1984 3.1399 3.0798

3.5257 3.4296 3.3299 3.2261 3.1725 3.1176 3.0613 3.0035 2.9441 2.8828

3.3736 3.2773 3.1772 3.0728 3.0187 2.9633 2.9063 2.8478 2.7874 2.7249

3.2497 3.1532 3.0527 2.9477 2.8932 2.8373 2.7797 2.7204 2.6590 2.5955

3.1469 3.0501 2.9493 2.8437 2.7888 2.7324 2.6742 2.6142 2.5519 2.4872

3.0602 2.9633 2.8621 2.7559 2.7006 2.6437 2.5850 2.5242 2.4611 2.3953

2.9862 2.8890 2.7875 2.6808 2.6252 2.5678 2.5085 2.4471 2.3831 2.3163

2.9222 2.8249 2.7230 2.6158 2.5598 2.5021 2.4422 2.3801 2.3153 2.2474

2.8664 2.7689 2.6667 2.5590 2.5027 2.4445 2.3842 2.3214 2.2558 2.1869

2.8173 2.7196 2.6171 2.5089 2.4523 2.3937 2.3329 2.2695 2.2032 2.1333

2.7737 2.6758 2.5731 2.4645 2.4076 2.3486 2.2873 2.2234 2.1562 2.0853

2.7348 2.6368 2.5338 2.4247 2.3675 2.3082 2.2465 2.1819 2.1141 2.0422

2.6998 2.6017 2.4984 2.3890 2.3315 2.2718 2.2097 2.1446 2.0760 2.0032

2.6682 2.5699 2.4665 2.3567 2.2989 2.2389 2.1763 2.1107 2.0415 1.9677

2.6396 2.5412 2.4374 2.3273 2.2693 2.2090 2.1460 2.0799 2.0099 1.9353

2.6135 2.5149 2.4110 2.3005 2.2422 2.1816 2.1183 2.0517 1.9811 1.9055

2.5895 2.4909 2.3867 2.2759 2.2174 2.1565 2.0928 2.0257 1.9545 1.8781

2.5675 2.4688 2.3644 2.2533 2.1946 2.1334 2.0693 2.0018 1.9299 1.8527

2.5473 2.4484 2.3438 2.2324 2.1735 2.1121 2.0477 1.9796 1.9072 1.8291

2.5286 2.4295 2.3248 2.2131 2.1540 2.0923 2.0276 1.9591 1.8861 1.8072

2.5112 2.4120 2.3072 2.1952 2.1359 2.0739 2.0089 1.9400 1.8664 1.7867

2.3882 2.2882 2.1819 2.0677 2.0069 1.9429 1.8752 1.8028 1.7242 1.6371

2.2702 2.1692 2.0613 1.9445 1.8817 1.8152 1.7440 1.6668 1.5810 1.4822

2.1570 2.0548 1.9450 1.8249 1.7597 1.6899 1.6141 1.5299 1.4327 1.3104

2.0493 1.9447 1.8326 1.7085 1.6402 1.5660 1.4835 1.3883 1.2684 1.0000
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Table B-4. F-table F.01 (f1,f2), 99% confidence
f1 = Number of degrees of freedom of numerator

f2 = Number of degrees of freedom of denominator

f1

f2

1 2 3 4 5 6 7 8 9

1 4052.2 4999.5 5403.3 5624.6 5763.7 5859.0 5928.3 5981.6 6022.5

2 98.503 99.000 99.166 99.249 99.299 99.332 99.356 99.374 99.388

3 34.116 30.817 29.457 28.710 28.237 27.911 27.672 27.489 27.345

4 21.198 18.000 16.694 15.977 15.522 15.207 14.986 14.799 14.659

5 16.258 13.274 12.060 11.392 10.967 10.672 10.456 10.289 10.158

6 13.745 10.925 9.7795 9.1483 8.7459 8.4661 8.2600 8.1016 7.9761

7 12.246 9.5466 8.4513 7.8467 7.4604 7.1914 6.9928 6.8401 6.7188

8 11.259 8.6491 7.5910 7.0060 6.6318 6.3707 6.1776 6.0289 5.9106

9 10.561 8.0215 6.9919 6.4221 6.0569 5.8018 5.6129 5.4671 5.3511

10 10.044 7.5584 6.5523 5.9943 5.6363 5.3858 5.2001 5.0567 4.9424

11 9.6460 7.2057 6.2167 5.6683 5.3160 5.0692 4.8861 4.7445 4.6315

12 9.3302 6.9266 5.9526 5.4119 5.0643 4.8206 4.6395 4.4994 4.3875

13 9.0738 6.7010 4.7394 5.2053 4.8616 4.6204 4.4410 4.3021 4.1911

14 8.8616 6.5149 5.5639 5.0354 4.6950 4.4558 4.2779 4.1399 4.0297

15 8.6831 6.3589 5.4170 4.8932 4.5556 4.3183 4.1415 4.0045 3.8948

16 8.5310 6.2262 4.2922 4.7726 4.4374 4.2016 4.0259 3.8896 3.7804

17 8.3997 6.1121 5.1850 4.5590 4.3359 4.1015 3.9267 3.7910 3.6822

18 8.2854 6.0129 4.0919 4.5790 4.2479 4.0146 3.8406 3.7054 3.5971

19 8.1850 5.9259 5.0103 4.5003 4.1708 3.9386 3.7653 3.6305 3.5225

20 8.0960 5.8489 4.9382 4.4307 4.1027 3.8714 3.6987 3.5644 3.4567

21 8.0166 5.7804 4.8740 4.3688 4.0421 3.8117 3.6396 3.5056 3.3981

22 7.9454 5.7190 4.8166 4.3134 3.9880 3.7583 3.5867 3.4530 3.3458

23 7.8811 5.6637 4.7649 4.2635 3.9392 3.7102 3.5390 3.4057 3.2986

24 7.8229 5.6136 4.7181 4.2184 3.8951 3.6667 3.4959 3.3629 3.2560

25 7.7698 55.680 4.6755 4.1774 3.8550 3.6272 3.4568 3.3239 3.2172

26 7.7213 5.5263 4.6366 4.1400 3.8183 3.5911 3.4210 3.2884 3.1818

27 7.6767 5.4881 4.6009 4.1056 3.7848 3.5580 3.3882 3.2558 3.1494

28 7.6356 5.4529 4.5681 4.0740 3.7539 3.5276 3.3581 3.2259 3.1195

29 7.5976 5.4205 4.5378 4.0449 3.7254 3.4995 3.3302 3.1982 3.0920

30 7.5625 5.3904 4.5097 4.0179 3.6990 3.4735 3.3045 3.1726 3.0665

40 7.3141 5.1785 4.3126 3.8283 3.5138 3.2910 3.1238 2.9930 2.8876

60 7.0771 4.9774 4.1259 3.6591 3.3389 3.1187 2,9530 2.8233 2.7185

120 6.8510 4.7865 3.9493 3.4706 3.1735 2.9559 2.7918 2.6629 2.5586

6.6349 4.6052 3.7816 3.3192 3.0173 2.8020 2.6393 2.5113 2.4073



Appendix B 289

(continued)

10 12 15 20 24 30 40 60 120

6055.8 6106.3 6157.3 6208.7 6234.6 6260.7 6286.8 6313.0 6339.4 6366.0

99.399 99.415 99.432 99.449 99.458 99.466 99.474 99.483 99.491 99.501

27.229 27.052 26.872 26.690 26.598 26.505 26.411 26.316 26.221 26.125

14.546 14.374 14.198 14.020 13.929 13.838 13.745 13.652 13.558 13.463

10.051 9.8883 9.7222 9.5527 9.4665 9.3793 9.2912 9.2020 9.1118 9.0204

7.8741 7.7183 7.5590 7.3958 7.3127 7.2285 7.1432 7.0568 6.9690 6.8801

6.6201 6.4691 6.3143 6.1554 6.0743 5.9921 5.9084 5.8236 5.7372 5.6495

5.8143 5.6668 5.5151 5.3591 5.2793 5.1981 5.1156 5.0316 4.9460 4.8588

5.2565 5.1114 4.9621 4.8080 4.7290 4.6486 4.5667 4.4831 4.3978 4.3105

4.8402 4.7059 4.5582 4.4054 4.3269 4.2469 4.1653 4.0619 3.9965 3.9090

4.5393 4.3974 4.2509 4.0990 4.0209 3.9411 3.8596 3.7761 3.6904 3.6025

4.2961 4.1553 4.0096 3.8584 3.7805 3.7008 3.6192 3.5355 3.4494 3.3608

4.1003 3.9603 3.8154 3.6646 3.5868 3.5070 3.4253 3.3413 3.2548 3.1654

3.9394 3.8001 3.6557 3.5052 3.4274 3.3476 3.2656 3.1813 3.0942 3.0040

3.8049 3.6662 3.5222 3.3719 3.2940 3.2141 3.1319 3.0471 2.9595 2.8684

3.6909 3.5527 3.4089 3.2588 3.1808 3.1007 3.0182 2.9330 2.8447 2.7528

3.5931 3.4552 3.3117 3.1615 3.0835 3.0032 2.9205 2.8348 2.7459 2.6530

3.5082 3.3706 3.2273 3.0771 2.9990 2.9185 2.8354 2.7493 2.6597 2.5660

3.4338 3.2965 3.1533 3.0031 2.9249 2.8442 2.7608 2.6742 2.5839 2.4893

3.3682 3.2311 3.0880 2.9377 2.8594 2.7785 2.6947 2.6077 2.5168 2.4212

3.3098 3.1729 3.0299 2.8976 2.8011 2.7200 2.6359 2.5484 2.4568 2.3603

3.2576 3.1209 2.9780 2.8274 2.7488 2.6675 2.5831 2.4951 2.4029 2.3055

3.2106 3.0740 2.9311 2.7805 2.7017 2.6202 2.5355 2.4471 2.3542 2.2559

3.1681 3.0316 2.8887 2.7380 2.6591 2.5773 2.4923 2.4035 2.3099 2.2107

3.1294 2.9931 2.8502 2.6993 2.6203 2.5383 2.4530 2.3637 2.2695 2.1694

3.0941 2.9579 2.8150 2.6640 2.5848 2.5026 2.4170 2.3273 2.2325 2.1315

3.0618 2.9256 2.7827 2.6316 2.5522 2.4699 2.3840 2.2938 2.1984 2.0965

3.0320 2.8959 2.7530 2.6017 2.5223 2.4397 2.3535 2.2529 2.1670 2.0642

3.0045 2.8685 2.7256 2.5742 2.4946 2.4118 2.3253 2.2344 2.1378 2.0342

2.9791 2.8431 2.7002 2.5487 2.4589 2.3860 2.2992 2.2079 2.1107 2.0062

2.8005 2.6649 2.5216 2.3689 2.2880 2.2034 2.1142 2.0194 1.9172 1.8047

2.6318 2.4961 2.3523 2.1978 2.1154 2.0285 1.9360 1.8363 1.7263 1.6006

2.4721 2.3363 2.1915 2.0346 1.9500 1.8600 1.7629 1.6557 1.5330 1.3805

2.3209 2.1848 2.0385 1.8783 1.7908 1.6964 1.5923 1.4730 1.3246 1.0000
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Table B-5. F-table F.005 (f1,f2), 99.5% confidence
f1 = number of degrees of freedom of numerator

f2 = number of degrees of freedom of denominator

f1

f2

1 2 3 4 5 6 7 8 9

1 16211 20000 21615 22500 23056 23437 23715 23925 24091

2 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39

3 55.552 49.799 47.467 46.195 45.392 44.838 44.434 44.126 43.882

4 31.333 26.284 24.259 23.155 22.456 21.975 21.622 21.352 21.139

5 22.785 18.314 16.530 15.556 14.940 14.513 14.200 13.961 13.772

6 18.635 14.544 12.917 12.028 11.464 11.073 10.786 10.566 10.391

7 16.236 12.404 10.882 10.050 9.5221 9.1554 8.8854 8.6781 8.5138

8 14.688 11.042 9.5965 8.8061 8.3018 7.9520 7.6952 7.4960 7.3386

9 13.614 10.107 8.7171 7.9559 7.4711 7.1338 6.8849 6.6933 6.5411

10 12.826 9.4270 8.0807 7.3428 6.8723 6.5446 6.3025 6.1159 5.9676

11 12.226 8.9122 7.6004 6.8809 6.4217 6.1015 5.8648 5.6821 5.5368

12 11.754 8.5096 7.2258 6.5211 6.0711 5.7570 5.5245 5.3451 5.2021

13 11.374 8.1865 6.9257 6.2335 5.7910 5.4819 5.2529 5.0761 4.9351

14 11.060 7.9217 6.6803 5.9984 5.5623 5.2574 5.0313 4.8566 4.7173

15 10.798 7.7008 6.4760 5.8029 5.3721 5.0708 4.8473 4.6743 4.5364

16 10.575 7.5138 6.3034 5.6378 5.2117 4.9134 4.6920 4.5207 4.3838

17 10.384 7.3536 6.1556 5.4967 5.0746 4.7789 4.5594 4.3893 4.2535

18 10.218 7.2148 6.0277 5.3746 4.9560 4.6627 4.4448 4.2759 4.1410

19 10.073 7.0935 5.9161 5.2681 4.8526 4.5614 4.3448 4.1770 4.0428

20 9.9439 6.9865 5.8177 5.1743 4.7616 4.4721 4.2569 4.0900 3.9564

21 9.8295 6.8914 5.7304 5.0911 4.6808 4.3931 4.1789 4.0128 3.8799

22 9.7271 6.8064 5.6524 5.0168 4.6088 4.3225 4.1094 3.9440 3.8116

23 9.6348 6.7300 5.5823 4.9500 4.5441 4.2591 4.0469 3.8822 3.7502

24 9.5513 6.6610 5.5190 4.8898 4.4857 4.2019 3.9905 3.8264 3.6949

25 9.4753 6.5982 5.4615 4.8351 4.4327 4.1500 3.9394 3.7758 3.6447

26 9.4059 6.5409 4.4091 4.7852 4.3844 4.1027 3.8929 3.7297 3.5989

27 9.3423 6.4885 5.3611 4.7396 5.3402 4.0594 3.8501 3.6875 3.5571

28 9.2838 6.4403 5.3170 4.6977 4.2996 4.0197 3.8110 3.6487 3.5186

29 9.2297 6.3958 5.2764 4.6591 4.2622 3.9830 3.7749 3.6130 3.4832

30 9.1797 6.3547 5.2388 4.6233 4.2276 3.9492 3.7416 3.5801 3.4505

40 8.8278 6.0664 4.9759 4.3738 3.9860 3.7129 3.5088 3.3498 3.2220

60 8.4946 5.7950 4.7290 4.1399 3.7600 3.4918 3.2911 3.1344 3.0083

120 8.1790 5.5393 4.4973 3.9207 3.5482 3.2849 3.0874 2.9330 2.8083

7.8794 5.2983 4.2794 3.7151 3.3499 3.0913 2.8968 2.7444 2.6210
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(continued)

10 12 15 20 24 30 40 80 120

24224 24426 24630 24836 24940 25044 25148 25253 25359 25465

199.40 199.42 199.43 199.45 199.46 199.47 199.47 199.48 199.49 199.51

43.686 43.387 43.085 42.778 42.622 42.466 42.308 42.149 41.989 41.829

20.967 20.705 20.438 20.167 20.030 19.892 19.752 19.611 19.468 19.325

13.618 13.384 13.146 12.903 12.780 12.656 12.530 12.402 12.274 12.144

10.250 10.034 9.8140 9.5888 9.4741 9.3583 9.2408 9.1219 9.0015 8.8793

8.3803 8.1764 7.9578 7.7540 7.6450 7.5345 7.4225 7.3088 7.1933 7.0760

7.2107 7.0149 6.8143 6.6082 6.5029 6.3961 6.2875 6.1772 6.0649 5.9505

6.4171 6.2274 6.0325 5.8318 5.7292 5.6248 5.5186 5.4104 5.3001 5.1875

5.8467 5.6613 5.4707 5.2740 5.1732 5.0705 5.9659 4.8592 4.7501 4.6385

5.4182 5.2363 5.0489 4.8552 4.7557 4.6543 4.5508 4.4450 4.3367 4.2256

5.0855 4.9063 4.7214 4.5299 4.4315 4.3309 4.2282 4.1229 4.0149 3.9039

4.8199 4.6429 4.4600 4.2703 4.1726 4.0727 3.9704 3.8655 3.7577 3.6465

4.6034 4.4281 4.2468 4.0585 3.9614 3.8619 3.7600 3.6553 3.5473 3.4359

4.4236 4.2498 4.0698 3.8826 3.7859 3.6867 3.5850 3.4803 3.3722 3.2602

4.2719 4.0994 3.9205 3.7342 3.6378 3.5388 3.4372 3.3324 3.2240 3.1115

4.1423 3.9709 3.7929 3.6073 3.5112 3.4124 3.3107 3.2058 3.0971 2.9839

4.0305 3.8599 3.6827 3.4977 3.4017 3.3030 3.2014 3.0962 2.9871 2.8732

3.9329 3.7631 3.5866 3.4020 3.3062 3.2075 3.1058 3.0004 2.8906 2.7762

3.8470 3.6779 3.5020 3.3178 3.2220 3.1234 3.0215 2.9159 2.8058 2.6904

3.7709 3.6024 3.4270 3.2431 3.1474 3.0488 2.9467 2.8408 2.7302 2.6140

3.7030 3.5350 3.3600 3.1764 3.0807 2.9821 2.8799 2.7736 2.6625 2.5455

3.6420 3.4745 3.2999 3.1165 3.0208 2.9221 2.8198 2.7132 2.6016 2.4837

3.5870 3.4199 3.2456 3.0624 2.9967 2.8679 2.7654 2.6585 2.5463 2.4276

3.5370 3.3704 3.1953 3.0133 2.9176 2.8187 2.7160 2.6099 2.4960 2.3765

3.4916 3.3252 3.1515 2.9685 2.8728 2.7738 2.6709 2.5633 2.4501 2.3297

3.4499 3.2839 3.1104 2.9275 2.8318 2.7327 2.6296 2.5217 2.4078 2.2867

3.4117 3.2460 3.0727 2.8899 2.7941 2.6949 2.5916 2.4834 2.3689 2.2469

3.3765 3.2111 3.0379 2.8551 2.7594 2.6601 2.5565 2.4479 2.3330 2.2102

3.3440 3.1787 3.0057 2.8230 2.7272 2.6278 2.5241 2.4151 2.2997 2.1760

3.1167 2.9531 2.7811 2.5984 2.5020 2.4015 2.2958 2.1838 2.0635 1.9318

2.9042 2.7419 2.5705 2.3872 2.2989 2.1874 2.0789 1.9622 1.8341 1.6885

2.7052 2.5439 2.3727 2.1881 2.0890 1.9839 1.8709 1.7459 1.6055 1.4311

2.5188 2.3583 2.1868 1.9998 1.8983 1.7891 1.6691 1.5325 1.3637 1.0000
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