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Abstract  

Purpose – The purpose of this paper is to show the feasibility of constrained model predictive control (MPC) for 

sophisticated helicopter models which are derived by physical considerations. 

Approach – Physics based modeling is used to create control oriented helicopter models. Advanced constrained 

controllers are designed and tested for these sophisticated models. 

Findings – The helicopter models are valid and constrained MPC shows considerable promise for robust tracking. 

Practical implications – MPCs can be implemented for highly constrained helicopter flights. 

Originality/value – A complete process of control oriented, physics based model development for helicopters followed by 

MPC design is developed. It is also proved that constrained MPC can be used and implemented online to robustly track 

discontinuous helicopter trajectories with heterogeneous constraints, even when the models are sophisticated and physics 

based.  
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Introduction 

     Historically, aerospace vehicles control was approached using a decoupling principle: a single rigid body model was 

considered sufficient and the equations of motion were assumed to decouple. This led to tremendous simplification, 

resulting in low order controllers. However, the decoupling approximation was soon found inadequate even for fixed wing 

aircraft, when inertial roll coupling was first analyzed in Phillips, 1948. Nevertheless, decoupling continued to be used 

because technological limitations placed severe restrictions on the dimension of controllers that could be implemented. 

For rotorcraft, the single rigid body and decoupling assumptions are crude approximations. Their relative success in 

helicopter control was due to very conservative designs, which are not suitable for multi-objective missions with conflicting 

requirements. Several publications actually advocate for the use of coupled, multibody models for rotorcraft control design 

(Sahasrabudhe et al., 1997a; Sahasrabudhe and Celi, 1997b). 

     The ideal situation is when the model used for control is physics-based and it captures the essential dynamics of 

interest through a process called “control oriented modeling”. In the first part of this paper we present the development of 



such models for helicopters. Our models include a fully articulated main rotor, main rotor downwash, blade flexibility, 

fuselage and tail rotor aerodynamics. For control oriented modeling we use lumped system modeling for blade flexibility 

instead of solving nonlinear partial differential equations (PDEs) (Hodges and Dowell, 1974) or using finite element 

methods (Traugott et al., 2006). Our modeling approach, which involves application of the physics principles, directly 

leads to finite sets of ordinary differential equations (ODEs). This is a tremendous advantage because it facilitates direct 

use of modern, multivariable control theory. On the other hand if physics principles lead to PDEs models, only several 

ODEs are generated and retained to capture the dynamics of interest, amounting to qualitative and quantitative alteration 

of the original PDEs model. The models obtained using our approach consist indeed of nonlinear ODEs. The resulting 

models are validated by comparing their features (trim values and eigenvalues of linearized models) with results in the 

literature. 

     Control design is critical for safe and performant helicopter operation. Since helicopter flight is highly constrained, any 

control design should account for constraints on outputs and inputs. It is known that model predictive control (MPC) can 

simultaneously handle numerous output and input constraints (Maciejowski, 2001; Camacho and Bordons, 1999; Mayne 

et al., 2000). Therefore we design such controllers for models linearized around several flight conditions. The ability of 

MPC to track discontinuous trajectories while obeying heterogeneous constraints is investigated. Tracking discontinuous 

trajectories for helicopters is important because switching between flight conditions frequently occurs. For example, in the 

presence of atmospheric disturbances it may be required to switch from one attitude to another in order to better mitigate 

the disturbance.  

     Past research in MPC for helicopters focused predominantly on simple (Dutka et al., 2003; Afonso et al., 2010) or 

identified models (Bogdanov et al., 2001; Bottasso and Riviello, 2005; Dalamagkidis et al. 2010). On the other hand, our 

models are physics based, control oriented, and sufficiently complex to account for important effects in helicopter 

dynamics. The feasibility of controlling helicopters using MPC was also recently investigated in Joelianto et al., 2011, 

where the focus was on a small-scale helicopter. In our paper we evaluate MPC for large scale helicopters (i.e. Puma SA 

330) and the focus is on discontinuous trajectories. We therefore design MPC for our models evaluating: a) ability to track 

discontinuous trajectories, b) satisfaction of heterogeneous constraints, c) computation time, d) robustness to modeling 

uncertainties. 

Helicopter Model 

Modeling assumptions 



     The Earth is inertially fixed and the atmosphere is stationary. The helicopter has a plane of symmetry, constant mass 

and constant inertia matrix. Linear incompressible aerodynamics is considered for each subsystem. Flapping, lead-

lagging and flapwise bending angles are small. 

Newton-Euler equations, kinematic equations, and reference frames 

     The derivation of Newton-Euler and kinematic equations for the helicopter follows Padfield, 2007. The aircraft, hub, 

rotating, flapping, and lead-lagging reference frames and corresponding coordinate transformation matrices are described 

in Padfield, 2007; Done and Balmford, 2001 (see Figure 1 for flapping and lead-lagging). 

 
Figure 1     Flapping and Lead-Lagging 

 

 

In Figure 1 blade flapping and lead-lagging motions are illustrated. In this Figure   and   are flapping and lead-lagging 

angles, K


 and K  are stiffness coefficients of flapping and lead-lagging springs, e is hinge offset, r is blade strip 

distance from the flapping and lead-lagging hinge, R is blade radius, and îF , îL , ˆ
iR  are i-th unit vectors of flapping, lead-

lagging and rotating frames, respectively.  

Single blade equations  

     Single blade equations are obtained by integrating infinitesimal aerodynamic and inertial moments acting on the blade 

strips along the blade span with respect to (w.r.t.) blade hinge and including lead-lagging spring and damper moments as 

well as flapping spring moment. 



     The absolute acceleration of a generic point P at position 
P

r


from the helicopter’s center of gravity (cg) is 
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where 
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 is the angular velocity vector of rotating frame w.r.t. inertial frame, 
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 is the absolute acceleration of 

helicopter,   is the vector product symbol, t is time. The reference frames, R (rotating) and I (inertial), are written as left 

superscripts. The position of P on the blade w.r.t. the cg in rotating frame, including flapping and lead-lagging motion, is 
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where h is the vertical distance from cg to main rotor hub and the left subscript represents the frame in which any quantity 

is written. Gravitational acceleration effect is ignored for blade equations, but included in the helicopter Newton-Euler 

equations. Using 
I P

a


 (Equation 1), the infinitesimal inertial force and moment are  
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where m is blade’s linear mass density. The infinitesimal aerodynamic force and moment acting on a blade strip are 

determined using blade section angle of attack ( ) and  the oncoming air velocity of the blade strip (
I

airV ). The oncoming 

air velocity of the blade strip (Figure 2) in lead-lagging and flapping frame is  
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Figure 2     Blade Section-Infinitesimal Lift and Drag 

 

 



Assuming: 1) T PU U  and RU  is ignorable, 2) drag coefficient is 2
0 2dc      (Dreier, 2007) where 0  and 2  are 

parasite and induced components, 3) lift coefficient is 0lc a   where 0a  is the lift curve slope, the blade strip’s 

infinitesimal lift and drag forces and   are 
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where c is the blade chord length and the blade pitch angle, , consists of collective ( 0 ), two cyclic ( c , s ), and blade 

twist ( tw ) and it is 

0 cos( ) sin( ) ( / )c s tw r R                                                                       (6)   

Here   is the blade azimuth angle. Assuming ( / )P TdL dD U U (Leishman, 2006), the infinitesimal aerodynamic force 

and moment in lead-lagging and flapping frame are 
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Blade flexibility 

     Lumped system modeling is used for blade flexibility. Flapwise bending is considered. The blades are divided into rigid 

segments joined by flapwise bending springs and dampers as illustrated in Figure 3. 

 
Figure 3     Lumped System Modeling  

 

    
  The flapping angle of the (i+1)-th blade segment is 
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where n is the number of blade segments, C  is the damping coefficient of lead-lagging damper, k  is the deflection 

angle of the k-th flapwise bending spring, 1i   is the flapping angle of the (i+1)-th blade segment, and   is the root 

flapping angle. The blades are divided into three segments.  

Multi blade equations  

     Each blade motion is assumed synchronous (Padfield, 2007). Ignoring higher harmonic terms and using 4 blades for 

the main rotor, blade flapping, lead-lagging and flapwise bending motions are described by 
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Here  is the generic notation for any of the three angles mentioned above, while 0 , c , s , and d  are collective, 

two cyclic and differential components respectively. 

Main rotor downwash  

     The downwash is linearly distributed along the blade and its cyclic components, cλ , sλ ,  are  (Leishman, 2006, Pitt and 

Peters model) 
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where   is the wake skew angle. The uniform component of the downwash, 0 , can be calculated numerically using 

momentum theory:  
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where u, v, w are helicopter linear velocity components in aircraft frame,   is the air density, and T is the main rotor 

thrust.  

Fuselage model 

     For our models an analytic formulation (Drela, 1999), derived using slender body theory, is preferred for fuselage 

modeling. For a body of revolution (Figure 4), the infinitesimal aerodynamic forces and moments acting on a fuselage strip 

of length ds are 
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where ( )
f

R s  is the fuselage radius at distance s along the fuselage reference line (FRL) measured from the nose, ASr is 

the position vector of s, V


 is the local air velocity, V


 and 1V  are local air velocity’s components perpendicular and 

parallel to FRL respectively.  

 

Figure 4     Fuselage Subsystem 

 

 
     The pressure drag, d

p
c , and skin friction drag, d

f
c , are estimated from Hoerner, 1965. The profile function of the 

fuselage radius is 
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where l and d are fuselage length and height, respectively (Figure 4, Fx , Fz  are horizontal and vertical distances from cg 

to fuselage nose and , ,A A Ax y z  are unit vectors of aircraft frame). Assuming that the fuselage is in uniform downwash,  V


 

is  

0
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with the kinematic velocity at distance s on the FRL and the uniform downwash (in aircraft frame) 
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where ASr  in aircraft frame is  0
T

AS F FA
r x s z  , 

I
AV


 and I A  are absolute helicopter linear and angular velocities. 

Integrating the infinitesimal aerodynamic forces and moments along the fuselage span, the fuselage aerodynamic force 

and moment are obtained. 

Tail rotor model  

     The tail rotor does not flap, is not canted, creates a force in anti-torque direction, its induced inflow is ignored, and its 

thrust in aircraft frame is  
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Figure 5     Tail Rotor Subsystem 

 

 
where Tx , Tz  are horizontal and vertical distances from cg to tail rotor, TK  is the maximum thrust coefficient, chosen to 

keep the collective pitch angle of tail 1T   rad. In Figure 5 the tail rotor subsystem is illustrated. The tail rotor moment 

around cg is 
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where tail rotor  position w.r.t. cg in aircraft frame is 
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     The tail rotor hub and shaft drag force and moment are 
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where the frontal area and drag coefficient of the tail rotor hub and shaft,  
&h s

S and  
&

d
h s

c , are estimated from Prouty, 

2005, while local air velocity of the tail rotor is 

 I I I A
T A TV V r   
                                                                      (20) 

Model simplification  

     At the end of this modeling process, implemented using Maple, we find the nonlinear equations of motion in implicit 

form: 

( , , ) 0f x x                                                                              (21) 

where 44f  , 41x , and 4  (x and  are nonlinear state and control vectors). Note that the discrepancy 

between the size of  f(44) and the size of x(41) is due to the three static downwash equations. 

     The number of terms in Equation 21 is huge (of the order 510 ). To reduce this number an ordering scheme (see Oktay, 

2012 and Schwarz, 2009) is applied. The idea is to neglect terms whose relative magnitude w.r.t. the largest term in an 

expression is smaller than a specific amount. To apply the ordering scheme to the dynamic equations, each term is 

assigned an order of magnitude based on physical considerations. For example the trim value of   is 3 6  degrees 

(Leishman, 2006) and the trim value of   is small (Leishman, 2006).  The trim values of collective flapping and lead-

lagging angles ( 0  and 0 ) are generally larger than cyclic angles ( c , s , c , s ). The trim values of differential angles 

( d  and d ) are zero.  Therefore, the orders are chosen  as 

0 0 0.2   rad,    0.1c s c s       rad,     0.1d d   rad                                   (22) 

     The orders of u, v, w are determined by ignoring p, q, r (helicopter angular velocities in aircraft frame). For many 

helicopters (e.g. Puma SA 330, Bo 105) the maximum forward speed is around 70 m/s. Therefore, the order of u is 

chosen as 70 m/s. Because of drag limitation, the order of v is chosen as 35 m/s. Since w  is generally smaller than 12 

m/s, the order of w is chosen as 12 m/s. The bounds of main rotor control inputs are given in Prouty, 2005. The maximum 

0  and  c  are around 20 degrees. Since c  takes negative and positive values and s  has same order with c ,  we 

choose their orders as 

0 0.35  rad,      0.175c  rad,       0.175s  rad                                             (23) 



Trim, Linearization, Model Validation 

     Here trim is the condition for which straight level flight with constant speed ( AV ) is achieved. Note that we refer to all 

flights for which 1AV  kt as “hover” because of the very small value of AV . We obtained 25 trim equations (3 force and 3 

moment helicopter equations, 8 flapping and lead-lagging equations, 8 flapwise bending equations, and 3 main rotor 

downwash equations) and 25 unknowns. The trim values of helicopter angular velocities and yaw angle ( A ) are zero. 

The helicopter linear velocities are function of AV , roll ( A ) and pitch ( A ) angles of helicopter. The vector of trim 

unknowns is 
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Matlab’s fsolve was used to solve the trim equations for hover and different flight speeds. The results were verified by 

inserting them into the dynamic equations obtained after  ordering scheme application. Small numbers (around 1010 ) 

were obtained showing that trimming is correct. For hover and AV = 80 kts, the trims are 
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where all trim angles are given in radians and 00 0
, c   are in m/s. After trimming, our model was linearized using Maple, 

yielding continuous linear time-invariant systems 

                                                                                   up p p px A x B                                                                                (26) 

where px  and u are the perturbed  states and control inputs. Matrices pA  and pB  are of size 41x41 and 41x4. There are 

9 fuselage and 32 main rotor states, 3 main rotor and 1 tail rotor controls.  

     Puma SA 330 was used to validate the models previously developed with most technical data taken from Padfield, 

2007. We ascertained good match with results in the literature for many flight conditions. For example, most flight 



dynamics modes (linearized system eigenvalues) of our model for hover and AV = 80kts, shown in Table 1, match well 

results reported in Padfield, 2007. The 4th mode does not match well due to modeling discrepancy between our model and 

Padfield, 2007, however, the qualitative behavior is similar (exponentially stable mode). The matrices pA  and pB  of the 

linearized model around hover and AV = 40kts are provided in the Appendix. 

Table 1     Flight Dynamic Modes Comparison. 

HOVER 80 KTS MODE 
(rad/s) OUR MODEL PADFIELD OUR MODEL PADFIELD 

1st mode 0.1753  0.5816i 0.2772  0.5008i -0.5294  2.5879i -0.1854  1.0546i 

2nd mode 0. 0779  0.4357i -0.0410  0.5691i -0.0166  0.1572i -0.0085  0.2074i 

3rd mode -0.1514 -0.2697 -0.02752 -0.1358 

4th mode -1.1540 -0.3262 -1.0737 -1.5163 

5th mode -0.9987  0.3405i -1.2990  0.2020i -1.1014  2.2242i -0.9252  1.0503i 

The qualitative behavior of our flapping and lead-lagging modes is identical with the one described in Padfield, 2007. For 

example, the flapping modes are much farther away from the imaginary axis compared to the lagging modes and the 

magnitude of the frequency bound for the flapping modes is larger than the one for the lagging modes (Figure 6). All trim 

results also showed good correspondence with data in the literature (see the references in model simplification sub-

section).   

 
Figure 6     Flapping and Lead-Lagging Modes 

 

Constrained MPC 

     MPC has emerged as one of the best technologies to handle multiple, simultaneous and even discontinuous 

constraints on states and controls. MPC is also increasingly used in practice because it relies on models for predicting the 

system behavior and it has the potential for online adaptation (Maciejowski, 2001; Camacho and Bordons, 1999; Mayne et 

al., 2000).  Therefore, we design MPC controllers and also investigate MPC’s robustness. A brief description of MPC is 

given next. 



     In constrained MPC, a cost function ( )kV :  
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E, F, and G are suitable matrices,
 y

n  and un
 
are the number of outputs and inputs, pH  and uH  are prediction and 

control horizons, Q(i) and R(i) are matrix weights used in the corresponding Euclidean norms computation and they were 

taken as identity matrices in this paper, ˆ( | )y k i k  is the predicted output, û( | )k i k  and û( | )k i k   are the predicted 

input and predicted input variation, and ( | )r k i k  is the reference trajectory to be tracked (Figure 7). The optimization 

problem in Equations 27-29 is equivalent to a quadratic programming problem (Maciejowski, 2001). After solving it, only 

the first control in the resulting optimal control policy is applied and the optimization control problem is repeated for the 

next time horizon.  

 

 

 

 

 

 

 



Figure 7     MPC Representation 

 

 
     Our main goal is to investigate the ability of MPC to track discontinuous trajectories while obeying heterogeneous 

constraints. Furthermore, we want to evaluate the possibility of reliably using MPC with our sophisticated models. For this 

purpose we analyzed MPC design using our linearized models, which were discretized using a nondimensionalized 

sampling time of 1 rad (0.037s). The plant and measurements were assumed to be corrupted by additive Gaussian white 

noise. This means that the plant dynamics equation, Equation 26, becomes up p p p px A x B w    where pw  is the plant 

noise and the measurement equation is p pz M x  v  where pM  is the measurement matrix and v is the measurement 

noise. The measurements were 9 fuselage states (helicopter linear and angular velocities and Euler angles) so using 

Matlab, pM =[eye(9),zeros(9,32)] .  

     In the first example, the model linearized around hover and given in the Appendix was used. The helicopter is required 

to track a reference trajectory for which the roll angle has a prescribed time variation and the other two Euler angles are 

forced to be zero. The parameters used for 1st MPC design were 
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  (30)     
 

     For the second example, previous linearized model was used. The helicopter is required to track a reference trajectory 

for which helicopter pitch angle has a prescribed time variation and the other two Euler angles are forced to be zero. The 

parameters used for 2nd MPC design are the same with first example except that 



     ( )0.01 1 0.01 0.01 0 0.01
T T T

A A A rad                                                     (31)
 

     In the third example, to evaluate the robustness of our MPC designs we considered that all helicopter inertial 

parameters (helicopter mass and helicopter inertia matrix elements) are uncertain. For this purpose we considered that 

the plant model’s inertial parameters decrease by 10%, while the internal model, which is used to produce MPC signals, is 

not aware of these uncertainties. We then simulated the response of the plant affected by these uncertainties. The 

linearized model, trajectories and parameters used for MPC design are the same with the first example.     

     For the fourth example,  the helicopter model was linearized around straight level flight at 40kts. The trajectory and 

other MPC parameters are the same with the first example, but the simulation time is 3.7s. 

     For the fifth example, robustness of previous MPC w.r.t. variation of helicopter inertial parameters is examined. For this 

purpose we considered that the plant model’s inertial parameters decrease by 10%, while the internal model is not aware 

of these uncertainties. The only difference from the fourth example is that 

     ( )1 0.02 0.02 0 0.02 0.02
T T T

A A A rad                                                     (32)
 

     To show the feasibility of MPC for other flight conditions we used a model linearized around a helical turn ( 40AV  kts, 

the turn rate is 0.1rad/s, and the flight path angle is 0.1rad; see Oktay, 2012 for details) for the sixth example. The 

helicopter is required to track a reference trajectory for which the roll angle has a prescribed time variation and the other 

two Euler angles are forced to be zero. The simulation time is 3.7s. MPC parameters are same with first example except 

that 

1uH   ,         ( )1 0.02 0.02 1 0.02 0.02
T T T

A A A rad                                            (33) 

Note that the closed loop responses are variations from the trim values and Matlab was used for simulations. 

 

 

 

 

 

 

 

 

 



Figure 8     Selected Closed Loop Responses Using 1st MPC 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Figure 9     Selected Closed Loop Responses Using 2nd MPC 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Figure 10     Selected Closed Loop Responses Using 3rd MPC 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Figure 11     Selected Closed Loop Responses Using 4th MPC 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



Figure 12     Selected Closed Loop Responses Using 5th MPC 

 

 

 

 

 

 

 

 
 

 

 

 

 

 



Figure 13     Selected Closed Loop Responses Using 6th MPC 

 

 

 

 

 

 

 

 
 
 

 



     Calculation times of our MPCs are less than 0.2 radians (0.0074 s) which is 20% of the sampling time. Importantly, in 

all our nominal designs (when the plant is not affected by modeling uncertainties) MPC satisfied the constraints (see 

Figures 8,9,11,13). When modeling uncertainties (variation of inertial parameters) were considered, some of the plant 

outputs (helicopter pitch and yaw angles) violated the constraints (see Figures 10 and 12). These violations are larger in 

the fifth example than in the third. However, none of these violations is extreme.  

     It is also remarked that good tracking was achieved for all examples even when modeling uncertainties were 

considered. Our extensive simulations show that the other states (u,v,w,p,q,r) which are not included in the reference 

trajectory tracked by our MPC do not experience catastrophic behavior (e.g. large and fast variations).  

     Finally, our extensive experiments show that MPC is also successful in tracking different, highly constrained 

trajectories for many other straight level flights and helical turns, and also banked turns (see Oktay, 2012).  

Conclusions 

     Control oriented helicopter models are derived using physics principles. Validation of the models used for control 

against data from the literature indicates that our modeling process correctly captures essential helicopter dynamics, 

including flight dynamics, flapping, lead-lagging modes and trims. These models are used for advanced constrained 

control design, namely model predictive control (MPC). Our studies show that tracking of highly constrained discontinuous 

trajectories for sophisticated helicopter models using MPC is feasible. MPC is also robust to modeling uncertainties (i.e. 

variation of all helicopter inertial quantities). 
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Appendix 

     For hover flight and 40AV  kts (i.e. straight level flight) the matrices of linearized models are given in Equations 34-38. 

Matrix pA  can be obtained using ,pA     . The eigenvalues of pA  have to be multiplied by the main rotor angular 

speed,   ( =27 rad/s for Puma SA 330) to obtain dimensional modes of the helicopter. Note that the modes in Table 1 

are in dimensional form. In Equations 34-38 the letter e represents   . In Equation 38 the perturbed state and control 

vectors are also given. 
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-2.27e-23, 7.4e-23, 7.41e-22, 3.35e-22, 1.98e-22, -2.65e-26, 0, 0, 0, 9.63e-21, 5.82e-22, 1.96e-21, 5.42e-23, 3.04e-22, -4.07e-24, -1.41e+1, -1.65, -8.82e-21, -8.25e-21, -3.13e-24, -1.75e-23
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6.89e-3, -2.63e-5, 3.32e-6, 1.49e-6, 4.43e-4, -6.52e-6, 1.1e-3, 6.85e-6, 1.46e-6, -1.18e-4, -2.7e-7, 5.51e-7, 2.5e-4, -6.48e-6, 1.2e-3, 1.28e-5, 5.89e-6, -7.77e-6, -1.29e-6, 1.1e-6

-1.38e-4, -2.18


1kt

e-2, -1.22e-5, -1.3e-6, -3.2e-5, -1.99e-4, 1.04e-6, -1.21e-4, -1.05e-3, -1.05e-5, 5.22e-7, -2.37e-7, -5.34e-5, -9.05e-5, 8.53e-6, -4.94e-6, -1.14e-3, -1.31e-5, -4.52e-7, -2.15e-7

6.74e-4, 9.55e-5, 9.99e-7, 1.96e-7, -2e-2, -9.46e-4, 6.78e-5, 2.17e-5, 3.78e-5, 1.89e-5, -4.06e-6, -3.61e-6, -3.58e-3, 5.79e-4, -7.38e-5, -5.25e-6, -1.21e-6, 6.17e-6, -1.73e-6, 2.83e-8

-3e-3, -2.15e-1, 3.4e-4, 7.82e-5, -1.15e-4, -1.96e-3, 4.17e-4, 3.1e-4, -9.11e-3, 6.5e-4, -6.65e-5, -9.19e-5, -1.1e-3, -9.31e-4, -3.62e-4, -5.05e-4, -1.01e-2, 5.28e-5, 5.99e-5, -4.53e-5

-1.93e-2, 8.83e-4, 2.65e-4, 2.44e-4, -1.21e-3, -7.05e-5, -2.72e-3, 1.91e-4, -1.06e-4, -9.64e-5, 2.74e-5, 1.13e-4, -6.88e-4, 3.08e-6, -3.03e-3, 1.10e-5, 1.09e-4, 1.48e-4, -5.43e-5, 1.93e-4

-3.48e-4, -1.85e-2, 4.14e-5, 6.83e-6, -8.3e-6, -1.61e-4, 4.54e-5, 2.82e-5, -7.76e-4, 5.2e-5, -5.64e-6, -5.08e-6, -9.53e-5, -8.01e-5, -1.05e-4, -7.04e-5, -8.94e-4, 7.76e-5, 3.39e-6, -3.89e-6

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1.96e-2, 1.11e-2, 4.14e-6, 3.42e-6, 5.4, 5.4e-1, -2.86e-5, 1.98e-5, -7.88e-6, -6.41e-6, 2.6e-7, 1.37e-6, -9.69e-6, 1.84e-5, -3.79e-5, 5.67e-6, -1.25e-5, -3.5e-7, -6.34e-7, 2.52e-6

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1.76e-2, 4.74e-3, 2.75e-4, 2.57e-4, -1.28e-3, -1.1e-5, 5.4, 5.4e-1, 5.4e-1, -1.15e-4, 3.03e-5, 1.21e-4, -7.08e-4, 3.4e-5, -3.2e-3, 3.66e-5, 3.1e-4, 1.56e-4, -5.87e-5, 2.05e-4

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1.75e-2, -2.25e-1, 3.65e-4, 8.73e-5, -1.59e-4, -2.09e-3, -5.4e-1, 3.31e-4, 5.39, 5.41e-1, -7.01e-5, -9.55e-5, -1.19e-3, -9.93e-4, -4.53e-4, -5.36e-4, -1.08e-2, 7.34e-5, 6.26e-5, -4.46e-5 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-3.17e-24, -1.42e-25, 2.1e-2, 2.78e-3, -3.88e-26, -2.73e-24, -2.16e-25, -3.34e-25, 3.6e-26, 1.76e-25, 5.4, 5.4e-1, -7.97e-26, -1.45e-24, -1.17e-25, -1.51e-25, 7.36e-27, 7.72e-26, 1.12e-6, 1.46e-5

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-7.4e-4, -2.68e-3, 3.73e-6, 5.52e-7, -1.77e-5, -4.34e-2, -5.61e-3, -8.62e-3, 1.01e-3, 4.53e-3, -8.63e-7, -1.32e-6, -9.09e-4, -2.26e-2, -2.99e-3, -3.91e-3, 1.69e-4, 1.98e-3, 8.28e-7, -8.8e-7 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-6.19e-2, -2.12, 1.99e-4, 4.76e-5, -2.77e-3, -1.8e-2, -1.11e-3, -5.42e-2, -5.97e-2, 3.67e-4, -3.81e-5, -5.19e-5, -2.44e-3, -8.18e-3, -1.6e-3, -1.82e-2, -2.38e-2, 2.66e-5, 3.4e-5, -2.42e-5 

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

6.22e-1, -6.3e-2, -1.49e-4, -1.4e-4, 1.94e-2, 9e-2, 5.6e-2, -9.63e-5, -1.36e-3, -5.44e-2, -1.65e-5, -6.59e-5, 8.53e-3, 3.89e-3, 1.97e-2, -6.02e-6, -1.56e-3, -1.8e-2, 3.2e-5, -1.12e-4

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-3.48e-23, 4.78e-23, -3.89e-1, -6.02e-2, 4.69e-3, 1.3e-21, -1.5e-25, 2.37e-24, 3.44e-24, -1.88e-24, -1.32e-3, -5.44e-2, 5.51e-23, 7.12e-22, 1.81e-24, 9.87e-25, -1.06e-24, -1.17e-24, -1.38e-3, -1.79e-2

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

2.24e-2, 1.91e-2, -2.02e-6, -1.9e-6, -2.14e+1, -2.8, -2.05e-2, -2.17e-3, -3.81e-3, -9.07e-4, -2.24e-7, -8.95e-7, 5.4, 5.4e-1, 3.06e-5, 1.11e-5, 1.83e-6, -6.1e-6, 4.34e-7, -1.51e-6

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-2.9e-1, 4.86e-3, 2.57e-4, 2.41e-4, -4.39e-2, -4.54e-3, -2.04e+1, -2.8, -2.8, -2, 2.85e-5, 1.14e-4, -6.61e-4, 4.48e-5, 5.4, 5.4e-1, 5.4e-1, 1.45e-4, -5.52e-5, 1.93e-4

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1.26e-1, -4.85e-1, 3.43e-4, 8.23e-5, -3.75e-3, -3.69e-3, 2.8, 2, -2.04e+1, -2.8, -6.58e-5, -8.95e-5, -1.13e-3, -9.39e-4, -5.4e-1, -5.04e-4, 5.39, 5.4e-1, 5.87e-5, -4.16e-5  

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

8.26e-24, -3.31e-24, 1.29e-1, -2.71e-1, 9.46e-22, 1.27e-22, 3.31e-22, 3.45e-23, 3.02e-23, 4.31e-24, -2.14e+1, -2.8, -2.88e-25, -3.01e-24, -5.87e-25, -4.4e-25, -2.12e-25, 2.7e-25, 5.4, 5.4e-1 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

2.54e-2, 3.85e-2, 2.17e-6, 1.66e-6, 2.96e+1, 1.86, 9.17e-2, 3.55e-3, 1.69e-2, 1.57e-3, 7.93e-8, 5.85e-7, -1.75e+1, -2.79, -3.32e-2, -3.55e-3, -7.62e-3, -8.15e-4, -2.6e-7, 1.16e-6

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0

-1.72e-1, 4.99e-3, 2.65e-4, 2.48e-4, 1.85e-1, 8.18e-3, 2.96e+1, 1.86, 1.87, 3.91e-5, 2.93e-5, 1.17e-4, -6.86e-2, -7.28e-3, -1.65e+1, -2.79, -2.79, -2, -5.67e-5, 1.98e-4

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

2.62e-1, -3.72e-1, 3.53e-4, 8.45e-5, 2.64e-2, 1.38e-3, -1.86, 4.67e-4, 2.95e+1, 1.86, -6.76e-5, -9.21e-5, -8.75e-3, -2.44e-3, 2.79, 2, -1.65e+1, -2.79, 6.04e-5, -4.29e-5

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

9.39e-23, -1.48e-23, 2.66e-1, -1.51e-1, -1.09e-20, -7.9e-22, -2.36e-21, -1.41e-22, -4.73e-22, -3.81e-23, 2.96e+1, 1.86, 1.32e-21, 2.56e-22, 4.98e-22, 5.29e-23, 2.27e-23, 1.29e-23, -1.75e+1, -2.79
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-1.22e-5, 1e-4, 1.83e-4, -1.28e-3, -5.46e-3, -2.45e-7, 0, -1.79e-3, 0, 1.28e-5, -8.94e-5, -3.05e-4, -1.18e-4, -1.09e-4, -2.07e-4, -1.54e-6, -4.21e-6, -5e-5, -1.49e-4, 1.64e-4, 2.29e-2

-9.01e-5, 

 40kts

-2.8e-3, -5.72e-5, 5.57e-3, -1.22e-3, -1e-1, 1.79e-3, 3.88e-7, 0, -6.26e-5, -5.52e-4, -1.03e-4, -1.8e-4, 4.19e-4, 1.16e-4, -2.59e-6, -4.73e-6, -1.76e-4, -1.41e-5, 6.58e-3, -2.09e-5

6.01e-4, -2.58e-6, -2.65e-3, 4.25e-4, 1.02e-1, 2.46e-7, 7.28e-6, -9.55e-5, 0, -4.37e-3, 3.33e-4, -1.34e-4, -2.36e-5, 2.66e-5, 3.68e-5, -5.87e-8, -4.65e-8, -3.52e-7, 3.31e-3, 3.67e-4, 1.43e-3

-6.9e-4, 1.34e-2, 1.24e-3, 2.1  7e-3, -1.04e-2, -7.39e-3, 0, 0, 0, -6.61e-5, -5.05e-3, -9.89e-4, 2.03e-4, -1.71e-2, 3.16e-4, 2.43e-4, 2.13e-4, 6.47e-3, -6.41e-4, 6.39e-2, -3.46e-3

4.35e-3, -4.27e-4, -1.6e-2, 4.1e-3, -7.93e-3, 5.5e-7, 0, 0, 0, -1.07e-4, -3.07e-4, -5.02e-3, 1.95e-4, 4.22e-4, -1.51e-4, -1.5e-4, -1.17e-4, 2.8e-4, 4.16e-4, -9.68e-4, -6.42e-2

-1.92e-4, 2.46e-2, 1.06e-4, -1.82e-3, 1.67e-3, -1.45e-2, 0, 0, 0, 2.91e-5, -4

 

.45e-4, -3.68e-4, 1.74e-5, -1.62e-3, 2.72e-5, 4.94e-5, 1.84e-5, 2.18e-2, 2.57e-3, 6.34e-3, -2.85e-4

0, 0, 0, 1, -2.17e-4, 5.33e-2, 7.67e-22, 7.83e-20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 1, 4.07e-3, -7.81e-20, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, -4.07e-3, 1, 1.44e-20, 4.17e-21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 

2.87e-2, 3.39e-2, 1.56, 8.98e-2, 3.79e-4, -1.29e-5, 0, 0, 0, -7.79, -9.31e-1, -6.24e-3, 1.44e-3, 5.57e-3, -8.03e-2, -3.63e-6, -2.79e-6, 1.92e-2, -9.22e-3, -9.92e-3, 4.06e-2 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

-7.28e-2, 4.51e-1, -2.19e-2, 2.06, 4.42e-1, 1.32e-4, 0, 0, 0, -1.73e-1, 1.14e-3, -6.79, -9.3e-1, -9.48e-1, -2, -1.64e-4, -1.28e-4, -2.56e-2, 8.32e-2, 1.84e-2, 

 

-1.02e-1

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

3.83e-1, 1.09e-1, 7.17e-1, 4.58e-1, -2.05, -7.87e-3, 0, 0, 0, 7.29e-3, -1.65e-1, 9.1e-1, 2, -6.81, -9.3e-1, 2.56e-4, 2.25e-4, 1.17e-2, -2.16e-2, 8.84e-2, -6.9e-3

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0

7.12e-33, -8.43e-32, -5.46e-32, -3.24e-31, -1.35e-31, 1.13e-35, 0, 0, 0, 3.7e-31, 5.72e-32, 6.19e-34, 6.74e-32, 1.32e-31, -6.97e-34, -7.79, -9.3e-1, 5.26e-31, 2.15e-30, 3.31e-34, 8.97e-32  

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

-1.39e-2, 1.23e-3, 3.9e-2, -2.97e-2, 4.98e-2, -1.86e-4, 0, 0, 0, -3.64e-4, -6.29e-2, -1.02e-2, -2.32e-2, 2.26e-4, 1.15e-2, 6.09e-6, 5.35e-6, -3.86e-1, -6.3e-2, -6.25e-3, -1.51e-3

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

-2.86e-3, 5.8e-2, -6.82e-3, 7.16e-3, 1.85e-2, -4.27e-3, 0, 0, 0, -3.83e-3, -4.9e-2, -2.37e-4, -8.18e-2, -9.16e-2, 1.15e-3, 1.389e-4, 1.22e-4, -1.05e-2, -3.48e-3, 6.46e-1, -6.48e-2

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

4e-2, 3.09e-3, -6.36e-2, 1.69e-2, -3.92e-3, -7.53e-5, 0, 0, 0, 4.88e-2, 2.19e-2, 8.52e-2, 4.34e-4, 1.1e-3, -8.17e-2, 8.93e-5, 6.97e-5, -2.09e-3, 1.81e-2, 6.31e-2, 2.04

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

3.44e-32, 2.18e-32, -1.24e-31, -2.13e-32, 3.47e-31, -2.69e-38, 0, 0, 0, 5.7e-32, -1.14e-30, -3.59e-34, -1.13e-31, -1.13e-31, -4.24e-34, 9.65e-4, -8.19e-2, -9.42e-32, 3.17e-32, 5.44e-32, -2.43e-32

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-2.85e-1, 2.63e-2, 1.55, 1.31e-1, 1.11e-1, 3.83e-6, 0, 0, 0, 1.71e+1, 6.33e-1, 1.64e-1, -5.81e-3, -9.41e-3, 3.47e-3, 2.1e-6, 1.63e-6, 1.2e-1, -2.69e-1, -4.1e-2, 4.29e-2

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1.53e-1, 4.48e-1, -1.63e-2, 2.33, 1.71, 1.32e-4, 0, 0, 0, 3.35e-1, -3.86e-3, 1.71e+1, 6.32e-1, 6.61e-1, 9.99e-4, -1.52e-4, -1.19e-4, 6.4e-2, 8.91e-2, 1.21e-1, -3.08e-1

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

4.84e-1, 1.59e-1, -3.69e-1, 1.71, -2.33, -7.3e-3, 0, 0, 0, -9.24e-3, 5.29e-4, -6.05e-1, 6.31e-4, 1.71e+1, 6.33e-1, 2.38e-4, 2.09e-4, 8.67e-3, 1.63e-1, 3.15e-1, -6.31e-3 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-6.17e-32, -8.31e-32, -4.49e-31, 1.12e-31, 7e-31, 2.09e-34, 0, 0, 0, 1.22e-30, -1.17e-32, 7.31e-31, -5.71e-32, -1e-31, 4.39e-32, 1.71e+1, 6.32e-1, 2.89e-30, 3.96e-30, 3.83e-32, 2e-31

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1.36e-1, 1.55e-2, 1.55, 9.03e-2, 8.6e-2, 1.85e-5, 0, 0, 0, -1.41e+1, -1.65, -1.98e-1, -3.72e-3, 9.82e-3, 9.72e-4, -2.83e-6, -2.26e-6, 2.26e-1, -1.5e-1, -2.19e-2, 3.26e-2

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1.39e-1, 1.02e-2, -2.81e-2, 1.8, 2.65, 1.3e-4, 0, 0, 0, -3.94e-1, -1.81e-2, -1.42e+1, -1.65, -1.66, -2.68e-5, -1.57e-4, -1.23e-4, 2.09e-1, 6.34e-2, 2.26e-1, -2.33e-1 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-5.73e-3, 1.67e-1, 1.85e-1, 2.67, -1.82, -7.53e-3, 0, 0, 0, 3.16e-2, -2.38e-3, 1.64, 6.17e-4, -1.41e+1, -1.65, 2.45e-4, 2.15e-4, -3.91e-2, 2.48e-1, 2.31e-1, -6.95e-3  

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

9.16e-32, -1.1e-31, -4.86e-31, -4.27e-31, -7.91e-31, -8.87e-35, 0, 0, 0, -6.62e-30, -3.93e-31, -3.04e-30, -7.76e-32, 2.21e-31, 2.15e-32, -1.41e+1, -1.65, 6.26e-30, 5.27e-30, -2.83e-32, 6.91e-32 
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6.83e-3, -6.4e-7, -9.64e-7, 1.71e-6, 8.99e-4, 3.97e-5, 1.28e-3, 3.08e-5, 2.71e-5, -1.26e-4, -1.57e-6, 4.63e-7, 7.63e-4, 3.59e-5, 1.08e-3, 2.86e-6, 3.69e-6, -9.43e-6, -3.28e-6, 1.74e-6

-2e-4, -2.

40kts

18e-2, -3.32e-5, -7.14e-6, -1.57e-4, -4.33e-4, 8.24e-6, -1.25e-4, -1.18e-3, -3.63e-5, -2.7e-6, -1.54e-6, 2.76e-4, -1.74e-4, -8.44e-6, 1.4e-6, -9.4e-4, -3.6e-6, 3.23e-7, -1.76e-6

1.4e-3, -1.44e-4, 3.74e-6, 2.82e-6, -2e-2, -9.39e-4, -8.48e-6, 4.87e-5, 3.85e-5, 2.41e-5, -9.62e-6, -1.61e-5, -3.6e-3, 5.77e-4, 5.8e-5, -6.04e-6, 4.24e-5, 1.43e-5, -6.28e-6, -6.84e-7

-3.58e-3, -2.15e-1, 6.48e-4, 6.67e-4, -1.2e-3, -4.07e-3, 6.8e-4, 7.43e-5, -1.04e-2, 2.96e-4, 3.94e-4, -3.54e-4, 1.39e-3, -1.82e-3, -4.89e-4, -2.06e-3, -8.55e-3, 1.92e-4, -7.42e-6, 8.8e-5 

-1.92e-2, 8.73e-4, 5.63e-4, 4.21e-4, -2.43e-3, -2.93e-4, -3.25e-3, 9.58e-5, -1.88e-4, -7.59e-5, 8.88e-5, 2.31e-4, -2.17e-3, -8.82e-5, -2.8e-3, 3.48e-5, 1.03e-4, 6.61e-4, -1.13e-4, 3.87e-4 

-5.21e-4, -1.85e-2, 5.11e-5, 1.5e-4, -1.04e-4, -3.58e-4, 8.43e-5, 5.56e-6, -8.85e-4, 1.98e-5, 1.47e-5, -1.39e-5, 1.16e-4, -1.56e-4, -3.12e-4, -2.4e-4, -7.88e-4, 2.87e-4, -9.61e-6, 7.56e-6 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

4.53e-2, -8.04e-3, 1.63e-5, 1.25e-5, 5.4, 5.4e-1, -7.06e-5, 3.57e-5, -8.28e-6, -1.69e-5, 3.09e-6, 5.61e-6, -5.46e-5, 2.21e-5, -7.01e-5, 1.03e-5, -7.63e-6, 1.19e-5, -3.07e-6, 1.06e-5   

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-5.54e-2, 2.86e-3, 5.88e-4, 4.36e-4, -2.57e-3, -1.82e-4, 5.4, 5.4e-1, 5.4e-1, -9.16e-5, 8.76e-5, 2.52e-4, -2.34e-3, -3.33e-5, -2.97e-3, 9.64e-5, 2.78e-4, 6.98e-4, -1.21e-4, 4.11e-4 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1.41e-2, -2.51e-1, 7e-4, 7.18e-4, -1.35e-3, -4.37e-3, -5.39e-1, 7.57e-5, 5.39, 5.4e-1, 4.22e-4, -3.72e-4, 1.42e-3, -1.95e-3, -5.9e-4, -2.2e-3, -9.11e-3, 2.34e-4, -9.91e-6, 1.01e-4

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1.79e-31, 3.89e-34, 1.95e-2, -2.77e-2, 7.4e-35, 3.73e-33, 5.24e-34, 1.13e-33, -6.87e-35, -5.28e-34, 5.4, 5.4e-1, 3.61e-36, 1.97e-33, 2.67e-34, 5.05e-34, -7.22e-35, -2.54e-34, -2.61e-7, 1.79e-5

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-1.06e-3, -5.41e-3, 1.65e-5, 1.69e-5, 4.2e-4, -4.8e-2, -8.64e-3, -1.73e-2, 2.52e-3, 8.58e-3, 9.97e-6, -8.86e-6, 9.8e-4, -2.54e-2, -4.23e-3, -7.76e-3, 1.48e-3, 4.09e-3, -2.17e-7, 2.32e-6

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-6.32e-2, -2.13, 3.8e-4, 3.89e-4, 2e-3, -3.62e-2, -1.2e-3, -5.95e-2, -6.48e-2, 6.36e-4, 2.29e-4, -2.02e-4, 8.44e-4, -1.62e-2, 4.86e-4, -2.19e-2, -2.52e-2, 3.22e-4, -5.43e-6, 5.47e-5

0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

6.19e-1, -6.36e-2, -3.18e-4, -2.36e-4, 4e-2, 1.69e-2, 6.15e-2, 5.29e-4, -1.22e-3, -5.85e-2, -4.73e-5, -1.37e-4, 1.96e-2, 7.97e-3, 2.29e-2, 2.29e-4, -4.76e-4, -2.07e-2, 6.54e-5, -2.22e-4

0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

2.87e-32, -7.03e-32, -3.91e-1, -6.15e-2, -1.14e-31, -9.45e-31, -8.32e-35, -9.27e-32, -9.66e-32, 9.38e-33, -1.39e-3, -5.91e-2, -7.25e-32, -4.98e-31, -1.27e-32, -4.01e-32, -1.99e-32, 6.53e-33, 3e-4, -2.05e-2

0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

4.06e-2, 7.85e-2, -8.69e-6, -6.59e-6, -2.14e+1, -2.81, -1.62e-1, -3.03e-3, 6.05e-3, -7.87e-2, -1.52e-6, -3.24e-6, 5.4, 5.4e-1, 5.38e-5, 2.08e-5, 1.01e-5, -2.2e-5, 1.69e-6, -5.79e-6

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

-2.49e-1, 2.76e-3, 5.43e-4, 4.03e-4, -4.84e-1, -6.6e-3, -2.04e+1, -2.81, -2.82, -2, 8.05e-5, 2.33e-4, -2.16e-3, -1.13e-5, 5.4, 5.4e-1, 5.4e-1, 6.4e-4, -1.12e-4, 3.8e-4

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

1.2e-1, -4.5e-1, 6.5e-4, 6.67e-4, 1.49e-2, -1.61e-1, 2.79, 2, -2.04e+1, -2.8, 3.91e-4, -3.45e-4, 1.31e-3, -1.83e-3, -5.41e-1, -2.04e-3, 5.39, 5.4e-1, -9.38e-6, 9.39e-5

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

3.32e-31, -2.38e-33, 1.23e-1, -2.41e-1, 7.56e-31, -7.23e-32, -4.97e-31, 1.7e-32, 2.45e-31, -1.5e-34, -2.14e+1, -2.8, 4.61e-34, 4.44e-33, 1.09e-33, 2.05e-33, 1.12e-33, -8.34e-34, 5.4, 5.4e-1

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0

9.23e-3, 1.26e-1, 6.7e-6, 4.56e-6, 2.96e+1, 1.86, 4.85e-1, 7.54e-3, -1.56e-2, 1.44e-3, 3.28e-7, 4.29e-6, -1.75e+1, -2.79, -3.08e-1, -5.63e-3, 8.7e-3, -7.75e-2, -1.66e-6, 5.5e-6

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0

-1.83e-1, 1.4e-3, 5.61e-4, 4.16e-4, 9.71e-1, 1.71e-2, 2.96e+1, 1.87, 1.89, 3.77e-4, 8.33e-5, 2.41e-4, -7.72e-1, -1.17e-2, -1.65e+1, -2.79, -2.8, -2, -1.15e-4, 3.92e-4 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0

2.22e-1, -3.81e-1, 6.7e-4, 6.87e-4, -4.61e-2, -1.65e-3, -1.84, -5.6e-4, 2.96e+1, 1.86, 4.03e-4, -3.56e-4, 3.07e-2, -1.56e-1, 2.77, 2, -1.65e+1, -2.79, -9.66e-6, 9.68e-5

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1

1.22e-31, 2.8e-32, 2.27e-1, -1.65e-1, 5.38e-30, 5.51e-31, 3.73e-30, 2.43e-31, -3.11e-31, -8.89e-33, 2.96e+1, 1.86, 2.82e-30, -1.48e-31, -7.36e-31, 4.74e-33, 4.34e-31, -9.71e-33, -1.75e+1, -2.79 
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7.16e-6, 1.34e-4, 1.12e-6, 1.17e-9

-7.4e-6, 4.7e-7, -1.27e-4, 2.46e-4

2.94e-5, -1.98e-5, -3.59e-6, 1.44e-8

1.8e-5, 1.3e-4, -1.03e-3, 8.8e-4

2.49e-6, -3.16e-4, -3.86e-5, -2.19e-8

8.99e-7, 1.41e-5, 1.9

p
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1kt

7e-7, -3.74e-3

0, 0, 0, 0

0, 0, 0, 0

0, 0, 0, 0

0, 0, 0, 0

3.91e-1, 1e-3, 1.82e-3, 1.46e-6

0, 0, 0, 0

2.09e-3, 3.9e-1, -1.18e-5, -1.56e-5

0, 0, 0, 0

3.58e-3, 1.38e-4, 3.9e-1, 9.34e-4

0, 0, 0, 0

-3.42e-24, 6.54e-25, -5.6e-25, 4.16e-28

0, 0, 0, 0

9.18e-2, 1.57e-3, -1.46e-2, 1.08e-5

0, 0, 0, 0

3.66e-03, 9.18e-2, -5.7e-4, 5.08e-4

0, 0, 0, 0

-2.94e-2, 2.05e-4, 9.16e-2, 8.86e-6

0, 0, 0, 0

6.49e-24, -6.04e-26, -2.56e-24, -4.38e-29

0, 0, 0, 0

1.63, 3.69e-3, 5e-4, 1.27e-7

0, 0, 0, 0

7.12e-3, 1.63, -3.16e-5, -1.60e-5

0, 0, 0, 0

1.28e-3, 1.12e-4, 1.62, 8.76e-4

0, 0, 0, 0

1.08e-22, 2.76e-23, 1.51e-24, 1.03e-26

0, 0, 0, 0

2.56, 1.5e-3, -8.17e-4, 1.26e-6

0, 0, 0, 0

3.3e-3, 2.56, -1.93e-4, -1.62e-5

0, 0, 0, 0

-1.88e-3, -5.5e-5, 2.56, 9.01e-4

0, 0, 0, 0

8.35e-22, 1.65e-22, 3.06e-23,  1.14e-26
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2.09e-5, 9.14e-5, -1.89e-5, 2.8e-9

-6.34e-6, -2.23e-5, -7.94e-5, 2.46e-4

-5.18e-6, -4.11e-5, -1.04e-5, -2.92e-8

8.08
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