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Tugrul Oktay 
 

ABSTRACT 
 
 

     Complex helicopter models that include effects typically ignored in control models, 
such as an analytical formulation for fuselage aerodynamics, blade lead-lagging and 
flexibility, and tail rotor aerodynamics, are derived. The landing gear, horizontal 
tailplane, a fully articulated main rotor, main rotor downwash, and blade flapping are also 
modeled. The modeling process is motivated by the desire to build control oriented, 
physics based models that directly result in ordinary differential equations (ODE) models 
which are sufficiently rich in dynamics information. 
     A physics based model simplification procedure, which is called new ordering 
scheme, is developed to reduce the number of terms in these large nonlinear ODE 
models, while retaining the same number of governing equations of motion. The resulting 
equations are trimmed and linearized around several flight conditions (i.e. straight level 
flight, level banked turn, and helical turn) using Maple and Matlab. The resulting trims 
and model modes are validated against available literature data.  
     The linearized models are first used for the design of variance constrained controllers 
with inequality constraints on outputs or inputs, output variance constrained controllers 
(OVC) and input variance constrained controllers (IVC), respectively. The linearized 
helicopter models are also used for the design of online controllers which exploit the 
constrained model predictive control (MPC) theory. The ability of MPC to track highly 
constrained, heterogeneous discontinuous trajectories is examined. The performance and 
robustness of all these controllers (e.g. OVC, IVC, MPC) are thoroughly investigated 
with respect to several modeling uncertainties. Specifically, for robustness studies, 
variations in the flight conditions and helicopter inertial properties, as well as blade 
flexibility effects, are considered.  
     Furthermore, the effectiveness of adaptive switching between controllers for the 
management of sensor failure during helicopter operations is studied using variance 
constrained controllers. Finally, the simultaneous design of the helicopter and control 
system is examined using simultaneous perturbation stochastic approximation in order to 
save active control energy. 
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CHAPTER 1: 

Introduction 

1.1 Literature Review and Summary 

     Historically, aerospace vehicles control was approached using a decoupling principle: 

a single rigid body model was considered sufficient and the equations of motion were 

assumed to decouple. This led to tremendous simplification, resulting in low order 

controllers. However, when inertial roll coupling was first analyzed [1], the decoupling 

approximation was soon found inadequate even for fixed wing aircraft. Nevertheless, 

decoupling continued to be used because technological limitations placed severe 

restrictions on the dimension of controllers that could be implemented. 

     For rotorcraft, the single rigid body and decoupling assumptions are crude 

approximations. Their relative success in helicopter control was due to very conservative 

designs, which are not suitable for multi-objective missions with conflicting 

requirements. Several publications actually advocate for the use of coupled, multibody 

models for rotorcraft control design. For example in [2-4] rotor and control system 

optimization was performed over flap stiffness, flap-lag elastic coupling factor, and 

control parameters. In [2] a coupled rotor-fuselage model with rigid blades [5,6] was used 

for integrated design, leading to the conclusion that lower control effort is achieved if the 

rotor and control system are designed simultaneously. Moreover, rotor dynamics and 

handling qualities cannot be treated independently [7]. 

     For control design the ideal situation is when the model used for control is physics-

based and it captures the essential dynamics of interest through a process called “control 

oriented modeling”. The main advantage of physics versus data based (e.g. identified) 
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models is that the former are more robust and versatile than the latter. In the first part of 

this dissertation the development of such models for helicopters is presented. The models 

include a fully articulated main rotor, linear main rotor downwash, blade flexibility, an 

analytical formulation for fuselage aerodynamics using slender body theory, a tail rotor 

aerodynamic model, horizontal tailplane, and landing gear. For control oriented 

modeling, lumped system modeling [8] is used for blade flexibility instead of solving 

nonlinear partial differential equations (PDEs) [9,10] or using finite element methods 

[11]. The control oriented modeling approach, which involves application of the physics 

principles, leads directly to dynamic models composed of finite sets of ordinary 

differential equations (ODEs). This is a tremendous advantage for control design because 

it facilitates the direct use of modern, multivariable control theory tools. Modern control 

system design relies heavily on state space representations of the system’s dynamics, 

which are readily obtained from ODEs. However, the situation is different, if application 

of the physics principles leads to models composed of PDEs. To obtain a finite set of 

ODEs from the infinite dimensional set of PDEs, tremendous work is required to find and 

retain a finite number of modes for control design. Thus only several ODEs are retained, 

usually selected to capture the modes that are considered relevant for the control design 

problem of interest, amounting to qualitative and quantitative alteration of the original 

PDEs based mathematical model. Moreover, this procedure complicates the verification 

and validation of the control system.  

     The models obtained using the control oriented approach consist indeed of nonlinear 

ODEs, but have too many terms, making their use in fast computation impossible. 

Therefore, a systematic simplification method, which is called “new ordering scheme”, is 
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applied to reduce the number of terms. The resulting models are validated by comparing 

their features, specifically trim values and eigenvalues of linearized models, with results 

in the literature.  

     In the second part of the dissertation the feasibility of these models in modern control 

design is studied. Since helicopters are subject to output and input limitations and a key 

requirement is minimization of control energy, the performances of output variance 

constrained controllers (OVC) and input variance constrained controllers (IVC) [12-19] 

were investigated. Such controllers were designed for linearized models and several flight 

conditions, monitoring: a) speed of convergence of solution algorithms, b) stability of the 

closed loop systems, c) satisfaction of constraints. Furthermore, since systems are subject 

to modeling uncertainties, closed loop stability robustness is thoroughly evaluated, first 

by varying helicopter’s speed. Secondly, the effect of modeling uncertainties was 

evaluated by using controllers designed for rigid blade models on flexible blade models 

and finally using controllers designed for flexible blade models with uncertain inertial 

properties. 

     One deficiency of the previously discussed variance constrained controllers is that 

they do not consider output and input constraints simultaneously. Due to this reason, 

model predictive control (MPC), which accounts simultaneously for output and input 

constraints, was examined. Past research in MPC for helicopters focused predominantly 

on simple [20-25] or identified models such as those obtained using neural networks [26-

31]. On the other hand, the models created in this dissertation are physics based, control 

oriented, and sufficiently complex to account for important effects in helicopter 

dynamics. MPCs were designed for control oriented models evaluating: a) ability to track 
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discontinuous trajectories, b) satisfaction of heterogeneous constraints, c) computation 

time, d) robustness to modeling uncertainties. 

     For maneuvering flight, control design is critical for safe and performant helicopter 

operation. In particular, helical turns and banked turns are of major interest. For example, 

they enable transitioning between two straight level flight conditions and monitoring an 

area of interest. They also allow armed helicopters to avoid ground attack, to possibly 

engage in air to air combat, etc. In this study the design of modern controllers are 

analyzed for such maneuvers. Since these maneuvers are highly constrained, any control 

design should account for constraints on outputs and inputs. Due to these requirements, 

variance constrained controllers with inequality constraints on outputs or inputs and 

model predictive control (MPC), which explicitly accounts for many constraints, are 

analyzed. 

     Another important issue in helicopter control is management of sensor failure. 

Physical (direct) redundancy, which means adding duplicate or even multiple sensors, is 

sometimes used for aerospace vehicles. This approach has many limitations [32,33]. For 

example, some sensors can be very expensive, and there are stringent space limitations on 

board helicopters which limit the number of sensors that can be carried. Moreover, 

placement of specific sensors is predetermined due to physical and operational 

conditions. For example, if all sensors measuring the same quantity are placed in a certain 

region of the helicopter, a physical phenomenon, such as regional stall and flow 

separation, may cause failure of these sensors all together. Therefore, different 

approaches, in which mathematical relations are used to obtain redundant measurements, 

are recently being developed [33-37]. 
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     In this dissertation an alternative approach, namely adaptive switching between 

controllers which are adequate for different sets of sensors, but provide the same 

prespecified performance, is proposed. This approach has nowadays become possible due 

to recent advances in control theory, signal processing, microelectronics, power 

electronics, and microprocessors. Switching between controllers can then be easily and 

reliably implemented electronically, thus not requiring addition of mass. The idea 

investigated is if one can adaptively change the controller in flight to satisfy the same 

constraints when the set of measurements changes due to sensor failure. Therefore, 

variance constrained controllers and MPC with different sets of measurements are also 

studied. 

     Traditionally, the plant to be controlled is given a priori to the control engineer who 

has no influence on the plant design process. However, it is well-known that the plant and 

control system design problems are not independent [38,39]. Simple changes in plant 

parameters may improve performance significantly. The traditional sequential approach: 

1) design the plant, and 2) design the control system, does not usually provide the best 

overall design [38,39]. Ideally, the plant and control system should be simultaneously 

designed to optimize a given objective (e.g. cost function). This is definitely a much more 

difficult problem. In this dissertation we pursue this idea and simultaneously design 

helicopter plant (blade and operation parameters) and control system to minimize the 

active control effort while obeying constraints on the physical parameters of the 

helicopter and control system.    

     Previous work in helicopter redesign was limited to passive design ˗˗ control system 

parameters were never included. For example, in [7] a redesign optimization study is 
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performed in which rotor dynamics and flight dynamics are simultaneously taken into 

account to maximize the damping of a rotor lag mode with respect to certain design 

parameters (e.g. blade torsion stiffness, blade chord length). In another study [40], 

vibratory loads at the rotor hub, which are the main sources of helicopter vibration, are 

reduced by redesigning the helicopter using certain variables (e.g. blade lag and torsion 

stiffness). Several other papers also report helicopter redesign studies [41,42].  

     For our simultaneous design study complex physics based control oriented helicopter 

models are used. However, the resulting constrained optimization problem is very 

complex and does not allow analytical computation of derivatives such as gradients and 

Hessians. Since numerical approximation of these derivatives for such complex (large) 

problems is prohibitive and possibly numerically unstable, we selected a fast stochastic 

optimization method, called SPSA (simultaneous perturbation stochastic approximation), 

to solve these problems [43,44]. An algorithm, which illustrates the effectiveness of 

combining SPSA and simultaneous helicopter plant and control system design to 

minimize control effort, is developed. A novel adaptive SPSA that accounts for the 

constraints that the optimization variables must be between lower and upper limits is also 

developed to solve related problems. 

1.2 Main Contributions 

     One of the major contributions of this dissertation is in showing a complete process of 

control oriented, physics based model development for helicopters followed by modern 

control design. The modeling process is specifically designed to result in ODEs which are 

sufficiently rich in dynamics information for modern control design.  
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     For this dissertation, in order to simplify the nonlinear ODEs, firstly the classical 

ordering scheme (see Celi [45]) was used. However, it was quickly ascertained that strict 

application of this classical ordering scheme leads to erroneous results (for example, 

unrealistic modes were obtained). This led to the development of a novel model 

simplification procedure, called the “new ordering scheme”, which resulted in realistic 

trim conditions and modes which were also validated against available literature data.      

     Another important contribution of this dissertation is that it shows that modern 

constrained controllers can be applied to the helicopter models developed herein, which 

are beyond the typical complexity used for helicopter control design. This is the first 

study to apply variance constrained controllers to helicopters, while also thoroughly 

investigating their stability robustness properties. This is also the first advanced study 

which shows that constrained MPC can be used and implemented online to robustly track 

discontinuous helicopter trajectories, even when the models are sophisticated and physics 

based.  

     The simultaneous helicopter plant and control system design idea is also investigated 

with advanced constrained control techniques and highly complex helicopter models.  

This is the first study which shows a complete process of simultaneous helicopter plant 

and control system design. This is also the first study examining simultaneous helicopter 

plant and control system design using variance constrained controllers. A stochastic 

optimization technique, specifically SPSA, is used for the first time for this purpose. A 

novel adaptive SPSA accounting for the constraints that the optimization variables must 

be between lower and upper limits is also developed. 

     Finally, the idea to switch adaptively between controllers for the management of 



 8 

sensor failure during helicopter operations is investigated, also for the first time. 

Specifically, output variance constrained controllers (OVC) and input variance 

constrained controllers (IVC) are considered.  
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CHAPTER 2: 

Modeling and Model Simplification 

2.1 Newton-Euler (Dynamic) and Kinematic Equations of a Generic Helicopter 

     Throughout this dissertation the following general key assumptions are made to derive 

Newton-Euler and kinematic equations of a generic helicopter: 

Key Assumptions: 

- The helicopter has a plane of symmetry. 

- The gravitational force and moment acting on the blade is ignored.  

- Each blade is composed of individual blade segments that are considered rigid.  

     In order to derive Newton-Euler equations of the helicopter, forces and moments due 

to the blade motion should be found. To obtain these forces and moments, the position, 

velocity and acceleration of any generic blade point are needed. For the simplified blade 

model depicted in Fig. 2.1 these vectors can be easily obtained as showed next. 
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Figure 2.1: Scheme of Rotating Blade Connected to Axially Rotating Hub 

     In Fig. 2.1 the hub rotates around Iz , which is inertially fixed for this simple example, 

with constant angular velocity,  . The reference axes Ix  and Iy  are attached to the hub, 

F and M are the total force and moment acting on the blade at its center of gravity, while 

Rx , Ry , and Rz  are unit vectors of a blade rotating frame and Hx , Hy , and Hz  are unit 

vectors of the hub frame. Ignoring the blade thickness, the position of a generic point P 

on the blade in the rotating frame is  

01 2

OP T
 P PR =r r r 

                                                                                                       (2.1) 

Using the Transport Theorem [45, 46] the velocity of the generic point is expressed as 

I OP OP I R OP
 = +V r ω   rt 




   
                                                                                      (2.2)                                                                                   
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where 
I R
ω


 is the angular velocity of the rotating frame with respect to the inertial frame 

and in the hub frame it is  

 0 0
I R T

H
=                                                                                                         (2.3) 

Assuming that the blade is rigid, the velocity of the generic point is 

I OP I R OP
 =  V ω  r

  
                                                                                                   (2.4) 

The acceleration of the generic point, also expressed using the Transport Theorem, is  

( ) ( )
I OP I R OP I R I R OP

    = +a ω  r ω ω   rt   



     
                                                      (2.5) 

To obtain Newton-Euler equations of the helicopter, Eqs. 2.4 and 2.5 will be modified 

later on to account for the motion of the hub and helicopter with respect to the inertial 

(gravitational) frame.     

     The helicopter moment equation is derived using Euler’s Law (see [45]) and it is 

I I A II
 = +  h h ω  ht 




                                                                                                   (2.6) 

where 
I
h


 and 
I A
ω


 are the angular momentum and angular velocity of the helicopter 

with respect to the inertial frame. These are given by 

I I A
h I ω
 

,           I A T

A
p q r                                                                            (2.7)                                                

where the inertia matrix is 

0
0 0

0

xx xz

yy

xz zz

I I
I I

I I

 
 
 
 
 






                                                                                                       (2.8) 
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Using Eqs. 2.7 and 2.8 the helicopter moment equation is 

2 2
( ) ( )

( ) ( )
( ) ( )

xx yy zz xz

yy zz xx xzA

zz xx yy xz

L I p I I qr I pq r
M M I q I I pr I p r

N I r I I pq I p rq

   

     

   

  
  
  
     

 

 

                                                          (2.9) 

To obtain the helicopter force equation, Newton’s 2nd Law is used. This is simply 

cg

II I A
cg cg

a a= = +
dV V

F M M ω V
dt t


 
   

 
  

                                                                (2.10) 

where the helicopter’s center of gravity velocity in the aircraft frame is 

 TcgA
V u v w                                                                                                        (2.11) 

and aM  is the helicopter mass. Accounting also for the helicopter gravitational force, the 

helicopter force equation is  

( ) sin( )
( ) cos( )sin( )
( ) cos( )sin( )

a a A

a aA A A

a a A A

X M u qw rv M g
F Y M v ru pw M g

Z M w pv qu M g


 
 

  

    

  

  
  
  
     





                                                (2.12)                                      

     The rotational kinematic equation of the helicopter is derived using the helicopter’s 

angular velocities (p, q, r) and Euler orientation angles ( A , A , A ). For the 3-2-1 

rotation sequence [45, 47] (general aviation assumption), the rotational kinematic 

equation is 

 
 

 
( ) ( )
( ) ( )

A A A

A A A A A

A A A A A

-

= +

-

p ψ sin θ
q ψ cos θ sin θ cos
r ψ cos θ cos θ sin


 
 

  
  
  
     

 



                                                                       (2.13)                                                              

 



 13 

2.2 Nondimensionalization 

     Nondimensionalization is widely used in all engineering disciplines. In helicopter 

dynamics the general rules of nondimensionalization (see [48] [p.142] for details) are: 

i. Lengths are nondimensionalized by the main rotor radius, R 

ˆ =
ll
R

                                                                                                                            (2.14) 

ii. Time is nondimensionalized by the main rotor angular speed,   

ˆ
1/

=
tt


                                                                                                                        (2.15) 

iii. Linear velocities are nondimensionalized by the main rotor’s tip path speed, R  

ˆ ˆ ˆ, ,= = =
u v wu v w
R R R  

                                                                                   (2.16) 

iv. Angular velocities are nondimensionalized by the main rotor angular speed,    

ˆ ˆ ˆ= = =
p q rp q r
  

                                                                                              (2.17) 

v. Flapping, flapwise bending, and lagging springs are nondimensionalized by b 
  

b
=

K
k 
    ,           

b
=

Kk 
    ,         

b
=

K
k 
                                                             (2.18) 

vi. Tail rotor thrust coefficient is nondimensionalized by /b R    

T
T

b
=

K Rk
                                                                                                                       (2.19) 
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2.3 Nondimensionalized Dynamic and Kinematic Equations of The Helicopter  

    After application of the previous nondimensionalization rules, the nondimensionalized 

dynamic and kinematic equations are obtained as follows. 

Force Equations: 

 

 

2 2

2 2

2 2

sin
ˆ ˆ ˆ ˆ ˆ

cos( )sin
ˆ ˆ ˆ ˆ ˆ

cos( ) cos( )ˆ ˆ ˆ ˆ ˆ

A

a

A A

a

A A

a

gd Xu q w r v
d R R M

gd Yv r u p w
d R R M

d g Zw p v q u
d R R M


  

 
  

 
  

  

  

  







                                                      (2.20) 

Moment Equations: 

 

2

2 2
2

2

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

yy zz xz

xx xx xx xx

zz xx xz

yy yy yy yy

yyxx xz

zz zz zz zz

Id I I d Lp q r p q r
d I I I d I

d I I I Mq p r p q
d I I I I

Id I I d Nr p q q r p
d I I I d I

  

 

  

  

  

  

   
    

  

 
   

 
   

    
  

                                                  (2.21) 

Kinematic Equations: 

 

 

 

ˆ sin

ˆ cos( )sin cos( )

ˆ cos( )cos( ) sin

A A A

A A A A A

A A A A A

d dp
d d
d dq

d d
d dr

d d

  
 

    
 

    
 

 

 

 

                                                                 (2.22) 
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2.4 Blade Aerodynamics 

     The following general key assumptions are made to derive blade aerodynamic 

equations in this dissertation. 

Key Modeling Assumptions: 

-The radial component of blade section oncoming air velocity is negligible. 

-The tangential component of blade section oncoming air velocity is much bigger than its   

perpendicular component. 

-Linear and incompressible aerodynamics is considered. 

-Blade unsteady flow is ignored. 

-The Mach number and angle of attack are small. 

-Quasi-steady flow is considered [45]. 

     To obtain aerodynamic forces acting on blades, blade element theory (see [45] and 

[49] [pp. 45-57]) is used. The aerodynamic force acting on a blade element is  

aerof = dL +dD
  

                                                                                                            (2.23) 

where the infinitesimal lift and drag forces acting on any blade element, dL


 and dD


, are 

1 ˆ
2

2
nTotal ldL = ρ V c c dr V


,        1 ˆ

2
2

tTotal ddD = ρ V c c dr V


                                           (2.24) 

where TotalV  is the total oncoming air velocity of the blade element. Assuming that 

T PU U  and RU  is negligible, the infinitesimal lift and drag forces acting on the blade 

element are 
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1 ˆ
2

2
T nldL = ρ U c c dr V


,      1 ˆ

2 t
2
T ddD = ρ U c c dr V


                                                   (2.25) 

 

 

 

Figure 2.2: Blade Element-Infinitesimal Lift and Drag                                                                               

Assuming that 1) the blade section profile drag coefficient is 2
0 2dc      [50] [p. 591], 

2) linear and incompressible aerodynamics exist, and the blade element lift coefficient is 

0lc a  , 3) ( / )P TdL dD U U  [51] [p. 118], the infinitesimal aerodynamic force and 

moment acting on the blade element become 

2
2

0 23 0

2

0

1
2

b P
TLLF aero

T

T P T

PP T
T

UI Ud F U U U dxU aR U

U U U

   



 
 
 
 
  
    

 
 
  

     



        
                        (2.26)                      

0 ( ) ( )
T

LLF aero III LLF aero IILLF aerod M xR d F xR d F 
                                                         (2.27) 

Here 4 / bR ac I  is the Lock number and x is the nondimensional position of the blade 

element from the blade hinge (see Figs. 2.3 and 2.4). 
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2.5 Blade Dynamics 

     For this dissertation the following general key assumptions are made to derive blade 

dynamic equations. 

Key Modeling Assumptions: 

-Strip theory is used (see [45] and [50][pp. 133-137]). 

-Aircraft’s acceleration is small with respect to any blade strip acceleration. 

-Flapping and lagging hinge offsets are located at the same position. 

     The last assumption requires further clarification. There are several helicopter flap-

lag-pitch hinges configurations commonly used in practice and widely described in the 

literature. These configurations are illustrated in Fig. 2.3. For example, for the first 

configuration the flap hinge is closest to the main rotor hub. The pitch hinge is far from 

the main rotor hub. The lag hinge is between them. For the third configuration flap and 

lag hinges are aligned and the pitch hinge is far from them with respect to the main rotor. 

The type-3 configuration is chosen (Sikorsky S58, Westland Sea King, Westland Wessex) 

for helicopter model.  
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Figure 2.3: Flap-Lag-Pitch Hinges Configurations (Taken from [52] [p. 87]) 
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Figure 2.4: Fully Articulated Main Rotor with Type-3 Configuration  
(Taken from [49] [p. 7]) 

     The type-3 configuration is depicted in detail, together with other required 

components, in Fig. 2.4. The absolute acceleration of a blade strip point, P, at position 

P
r


from the helicopter’s center of gravity is 

( ) ( )
I P I R P I R I R P

    = +a ω  r ω ω   rt   



     
                                                         (2.28)   

where 

I R I A A R
=ω ω ω

  
                                                                                                     (2.29)       

These angular velocities in specific frames are       



 20 

 ˆ ˆ ˆA
I A Tp q r  ,            0 0 1H

A R T                                                      (2.30)                                                                                                                                                                                             

     For the strip theory application, the blades are modeled as flat rods (without thickness) 

in the blade span direction (see Figs. 2.6 and 2.7). The position of strip P on the blade 

with respect to the helicopter’s center of gravity, including flapping and lead-lagging 

motions specifically, is 

cos( ( ))cos( ( ))
sin( ( ))

sin( ( ))cos( ( ))

P

R

eR xR
r xR

hR xR

   
 

   







 
   
  

                                                                        (2.31) 

Using 
I P
a


 (Eq. 2.28) and the blade’s moment of inertia 3 3(1/ 3) (1 )bI m R e  , the 

infinitesimal inertial force and moment acting on any blade strip are  

2 3

3

(1 )

I P
b

I
IdF a dx

R e
 




,    I IdM r dF 

 
                                                              (2.32)  

where 

0 0 T
R =r xR                                                                                                           (2.33)                                                        

2.6  Blade Flapping and Lead-Lagging Motions 

     During forward flight, the local oncoming air velocity of each blade changes 

significantly. The advancing blades move faster than retreating blades, causing an 

important aerodynamic phenomenon called “dissymmetry of lift” (see Fig. 2.5). The 

dominant effect of this phenomenon is that the helicopter tends to roll.  This dissymmetry 

is the main difference between helicopter flight and fixed-wing aircraft. In order to solve 

the rolling problem experienced by helicopters during forward flight, the blades are 
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joined to the rotor hub via flexible articulations that allow each blade to experience 

different angles of attack. This idea was first proposed by Spanish inventor, Juan de la 

Cierva [53] [p. 64]. This added flexibility enables the flapping motion, which is an “up 

and down” motion with respect to the rotating frame (Fig. 2.6). 

 

 

 

Figure 2.5: Velocity Distribution During Forward Flight and  
Blade Flapping Motion 
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Figure 2.6: Blade Flapping Motion  

 

 

 

Figure 2.7: Blade Lead-Lagging Motion 

     When Juan de la Cierva invented the flapping hinge, he fixed the problem of the non-

symmetric aerodynamics. However, after flying for a short time, another important 

problem was revealed: structural distress always occurs due to the in-plane bending 

moment at the blade root. After Cierva understood that this in-plane bending moment is 

very high, he decided to add another hinge (lag hinge), thus solving this problem also 
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[53] [p. 65]. The lag hinge allows a “forward and backward” motion of the blade in the 

rotating frame. This motion is called lead-lag motion (see Fig. 2.7). 

     The lagging hinge solved another problem, namely the “ground resonance” effect (see 

Fig. 2.8). When the helicopter comes close to the ground, the perpendicular component of 

oncoming air velocity becomes smaller, and therefore, the angle of attack becomes larger. 

Due to the increase in lift, the rotor produces more thrust than required and this causes 

the helicopter to climb. Since lagging motion reduces the tangential component of 

oncoming air velocity, this problem can be solved with the lagging hinge.  

 

 

 

Figure 2.8: Ground Effect (Taken from [54] [p. 64])    

2.7 Reference Frames  

     Defining reference frames is crucial to derive the dynamic and kinematic equations of 

the helicopter. Gravity, aircraft, hub, rotating, flapping, lead-lagging, and flapping&lead-

lagging frames are used in this dissertation and G, A, H, R, F, L and LF subscripts are 
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used to refer to them, respectively. All transformation matrices used in this dissertation 

are defined next (see [45] for more details). 

i. Transformation matrices from the aircraft frame to the hub frame and from the hub 

frame to the aircraft frame are 

1 0 0
0 1 0
0 0 1

H AT 







 
 
 
  

,         
1 0 0

0 1 0
0 0 1

A HT 







 
 
 
  

                                                       (2.34)      

ii. Transformation matrices from the gravitational frame to aircraft frame and from the 

aircraft frame to the gravitational frame are      

   
           
         

cos( )cos( ) cos( )sin sin
sin sin cos( ) cos( )sin( ) sin sin sin cos( ) cos( ) sin cos( )
cos sin cos( ) sin( )sin( ) cos sin sin sin( )cos( ) cos( ) cos( )

A A A A A

A G A A A A A A A A A A A A

A A A A A A A A A A A A

T
    

           
           





 

 

 
   
  

      (2.35)   
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 

 



 
   
  

     (2.36) 

iii. Transformation matrices from the hub frame to the rotating frame and from the 

rotating frame to the hub frame are  

 
 

cos( ) sin 0
sin cos( ) 0

0 0 1

A A

R H A AT
 
   

 
 
 
  

,         
 

 
cos( ) sin 0
sin cos( ) 0

0 0 1

A A

H R A AT
 
 





 
 
 
  

             (2.37) 

iv. Transformation matrices from the rotating frame to the flapping frame and from the 

flapping frame to the rotating frame are 

cos( ( )) 0 sin( ( ))
0 1 0

sin( ( )) 0 cos( ( ))
F RT

   

   
 



 
 
 
  

,       
cos( ( )) 0 sin( ( ))

0 1 0
sin( ( )) 0 cos( ( ))

R FT
   

   






 
 
 
  

   (2.38) 
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v. Transformation matrices from the rotating frame to the lead-lagging frame and from 

the lead-lagging frame to the rotating frame are 

cos( ( )) sin( ( )) 0
sin( ( )) cos( ( )) 0

0 0 1
L RT

   
   





 
 
 
  

,     
cos( ( )) sin( ( )) 0
sin( ( )) cos( ( )) 0

0 0 1
R LT

   
    

 
   
  

  (2.39) 

vi. Transformation matrices from the rotating frame to the flapping&lead-lagging frame 

and from the flapping&lead-lagging frame to the rotating frame are 

cos( ( ))cos( ( )) sin( ( )) cos( ( ))sin( ( ))
sin( ( ))cos( ( )) cos( ( )) sin( ( ))sin( ( ))

sin( ( )) 0 cos( ( ))
LF RT

         
         

   








 
 
 
  

                      (2.40) 
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 
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 
  

                       (2.41) 

2.8 Blade Flexibility 

     For this dissertation the following general key assumptions are made to model blade 

flexibility. 

Key Modeling Assumptions: 

-Flapwise bending is dominant. 

-Lagwise bending, axial displacements, and torsion are ignored.  

     For helicopter modeling, lumped system modeling [8] was used for blade flexibility 

instead of solving nonlinear partial differential equations (PDEs) and integro-differential 

equations (IDEs) [9, 10] or using finite element methods [11]. In this approach the blades 
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are divided into rigid segments joined by flapwise bending springs and dampers (see Fig. 

2.9).   

     The flapping angle of the (i+1)-th blade segment is 

1
1

( ) ( ) ( ) , 1,..., 1
i

i k
k

i n     


                                                                 (2.42) 

where n is the number of blade segments, ( )k   is the deflection angle of the k-th 

flapwise bending spring, 1 ( )i    is the flapping angle of the (i+1)-th blade segment, and 

( )   is the root flapping angle.        

 

 

  

Figure 2.9: Lumped System Modeling for Blade Flexibility  

It is assumed that the deflection angles are small. For helicopter modeling the blades are 

divided into three segments.  

2.9 Multi-Blade Equations 

     The following general key assumptions are made to derive multi-blade equations for 

this dissertation. 

Key Modeling Assumptions: 

-The blades are identical. 
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-Each blade motion is synchronous. 

-Higher harmonic terms are neglected. 

     Most helicopters have at least two blades or more and each blade moves differently 

than others. This is very important for helicopter dynamics and aerodynamics. Therefore, 

the discussions in previous sections are extended for multi-blade main rotor models. 

After ignoring higher harmonic terms (and also using 4 blades for the main rotor), the 

blade flapping, lead-lagging and flapwise bending motions are described by 

 0 1 1 0( ) cos( ) sin( ) 1 i
i i ic s d                                                                             (2.43) 

where the blade azimuth angle is 

,( / 2)( 1) 1,...,4i i i                                                                                          (2.44) 

and   is the generic notation for any of the three angles mentioned in the above while 

0 , c , s , and d  are collective, two cyclic and differential components, respectively. 

Synchronous flapping motion is illustrated in Fig. 2.10 (see [47][pp. 102-106] for more 

discussion). 
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Figure 2.10: Synchronous Blade Flapping 

2.10 Fuselage Aerodynamics 

     For this dissertation the following general key assumptions are made to derive 

fuselage aerodynamic equations. 

Key Modeling Assumptions: 

-The fuselage is in the uniform downwash of the main rotor. 

-Stationary incompressible aerodynamics exists. 

-The fuselage is a regular body which is a good assumption for slender body theory. 

-The linear velocities are much larger than the velocities due to the fuselage rotation. 

     Fuselage aerodynamic modeling is generally done computationally or experimentally. 

However, in this dissertation an analytical approach [55] is used, derived using slender 

body theory, to obtain fuselage aerodynamic equations. For a body of revolution (Fig. 

2.11), the infinitesimal aerodynamic forces and moments acting on a fuselage strip of 

length ds are 
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12 ( ) ( ),Lift f f
ddf V V R s R s
ds

 
 

           ASLift LiftdM r df 
 

                                                 (2.45) 

1 12 ( ) 2 ( ) ,
2 2Drag f d f df p

df V V R s c V V R s c ds    
    

      Drag DragASdM r df 
 

     (2.46)                               

where ( )fR s  is the fuselage radius at distance s along the fuselage reference line (FRL) 

measured from the nose, ASr is the position vector of s, V


 is the local air velocity, V


 and 

1V  are the local air velocity’s components perpendicular and parallel to FRL, 

respectively. 

 

 

 

Figure 2.11: Fuselage Shape 

The pressure drag coefficient, d p
c , and the skin friction drag coefficient, d f

c , are 

estimated from [56] [pp. 2.1, 3.9]. The profile function of the fuselage radius is 

( ) 2f
s sR s d
l l

 
 
 
 

                                                                                                   (2.47)                                                                                          

where l and d are the fuselage length and height, respectively (see Fig. 2.11). Assuming 

that the fuselage is in uniform downwash,  V


 is  
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0

I I
SV V V  

  
                                                                                                            (2.48) 

where the kinematic velocity at distance s on the FRL and the uniform downwash are 

I I I A
S A ASV V r 
    ,      00

0 0
I T

A
V                                             (2.49)                       

where ASr  in aircraft frame is  0 T
F FASA

r R x s z  . Integrating the infinitesimal 

aerodynamic forces and moments along the fuselage span, the fuselage aerodynamic 

force and moment are obtained. 

2.11 Landing Gear Aerodynamics 

     The following general key assumptions are made to derive landing gear aerodynamic 

equations for this dissertation. 

Key Modeling Assumptions: 

-Main rotor inflow effect on the landing gear is ignored.  

-Stationary incompressible aerodynamics exists. 

-The linear velocities are much larger than the velocities due to the landing gear rotation. 

-Drag decrease due to the landing gear being retractable is ignored. 

     Rough drag coefficients for several landing gear configurations are given in Fig. 2.12. 

For the case helicopter “Puma SA 330”, the landing gear is the semi-retracting tricycle 

type, with twin wheels on each unit, and all of the units (the nose and tail units are under 

the fuselage) are partially exposed when retracted. The drag coefficient is chosen with 

respect to the nose and tail wheels’ areas, strut shape, and e/d ratio (see Fig. 2.12). The 

nose and tail units (landing gear) are modeled as a single rigid body to simplify 
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derivation of related equations. Specifically, a single rigid body is considered at the 

geometric center of the three units and the corresponding drag force and moment are 

computed and placed at this center. After determining the landing gear parameters, the 

landing gear drag force and moment (around helicopter’s center of gravity) are 

1
2

I
T T dlg lg lg

I
D V V S c
  

,     Tlg lg
M r D 
 

                                                                      (2.50) 

 

 

 

Figure 2.12: Landing Gear Drag (Taken from [54] [p. 303]) 
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2.12 Empennage Aerodynamics 

     For this dissertation the following general key assumptions are made to derive 

empennage aerodynamic equations. 

Modeling Assumptions: 

-The tail rotor does not flap, is not canted, creates a force in anti-torque direction, and its 

inflow is ignored. 

-Interactional aerodynamics between tail rotor and main rotor is ignored. 

- The linear velocities are much larger than the velocities due to the tail rotor hub&shaft 

and horizontal stabilizer rotations. 

 

 

 

Figure 2.13: Tail Rotor Subsystem 

     The tail rotor subsystem is illustrated in Fig 2.13. The flapping motion can also be 

modeled for the tail rotor, but it does not result in important contributions to forces and 
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moments. Therefore, the flapping motion for the tail rotor is not modeled for this 

dissertation. Using the tail rotor modeling assumptions, its thrust is 

 0 0 T
T TA TailF K                                                                                                                    (2.51) 

where TK  is the maximum thrust coefficient, chosen to keep the collective pitch angle of 

tail rotor, 1T  . The tail rotor moment around helicopter’s center of gravity is 

 z 0 x T
T T T T T TA TailM K K                                                                                               (2.52) 

 

 

 

Figure 2.14: Tail Rotor Hub&Shaft Drag (Taken from [54] [p. 299]) 
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     The tail rotor hub and shaft’s frontal area and drag coefficient are given for several 

helicopters in [54] [p. 298] for the case of 0% rpm. The effects of tail rotor shaft angle of 

attack and percentage rpm with respect to being unfaired or faired are given in Fig. 2.14. 

For the Puma SA 330 helicopter the drag coefficient is 0.98 for 0% rpm (static case). The 

hub&shaft is unfaired and the shaft angle of attack is assumed zero, which yields the drag 

coefficient equal to 1.03 (0.98*1/0.95). 

     The tail rotor hub&shaft drag force and moment are 

& & &

1
2

I I
T T dh s h s h s

D V V S c
  

,  
& &Th s h s

M r D 
 

                                                           (2.53)                                                          

where the frontal area and drag coefficient of the tail rotor hub&shaft,  
&h s

S and  
&dh s

c , 

are estimated from [54] [pp. 298, 299] (Puma SA 330 and Bo 105 have unfaired and 

faired tail rotor hub, respectively). The position of the tail rotor (and also the horizontal 

stabilizer) with respect to the helicopter’s center of gravity, and the local air velocity of 

the tail rotor are, respectively, 

 x 0 z T
T T TAr    ,      

I I I A
T TAV V r   
   

                                                                (2.54)                                          

     The horizontal stabilizer has an aerodynamic shape which is similar with the main 

rotor blades shape. Using the blade element theory and considering the taper ratio of the  

horizontal stabilizer along its span, the infinitesimal aerodynamic lift and drag forces 

acting on any horizontal stabilizer blade section are     

ˆ
hs hs

2
nhs hs l hs hs=

1dL ρ V c c dx V
2


,      ˆ

hs hs

2
hs hs d hs hs total=

1dD ρ V c c dr V
2


                         (2.55)                                        
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where hsV  is the oncoming horizontal stabilizer blade section airspeed, 
hs

lc  (flowfield is 

also effective on its magnitude [47] [p.150]) and 
hs

dc  are the lift and drag coefficients of 

any horizontal stabilizer blade section, respectively (see [47] [pp. 149-151, 265] for more 

details), and hsx  is the distance from the connection point between the fuselage and 

horizontal stabilizer to any horizontal stabilizer blade section. The horizontal stabilizer 

blade chord length, hsc , is  

0
hs hs hs hsc c k x                                                                                                           (2.56) 

where hsk  is the linear decrease ratio of the horizontal stabilizer chord length along its 

span. The infinitesimal moment of the horizontal stabilizer section around helicopter’s 

center of gravity is 

( )hs hs hs hsM r dL dD  
  

                                                                                                                (2.57)          

where hsr  is the position vector of any horizontal stabilizer blade section with respect to 

the helicopter’s center of gravity. 

2.13 Momentum Theory and Inflow 

     For this dissertation the following general key assumptions are made to apply 

momentum theory for the flight conditions examined. 

Key Modeling Assumptions: 

-There is no sudden increase or decrease (i.e. discontinuity) in air velocity while passing 

through the rotor disc. 

-Stationary incompressible aerodynamics exists. 
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2.13.1 Momentum Theory for Hover and Climbing 

     When the air passes through the rotor disc, there is a jump in the pressure. This jump 

creates thrust which is equal to 

T p S                                                                                                                        (2.58) 

     In Fig. 2.15 0S , 1S , 3S  are upstream, rotor disc, and downstream areas, respectively. 

In this moving control volume, for far upstream the pressure is the ambient pressure, p , 

and the velocity is the climbing velocity, cv . Stations 1 and 2 include the regions before 

and after rotor disc in control volume, respectively. Some additional mass flow, qm  , 

enters the moving control volume. In this streamtube iv  and  3v  are referring to the 

velocity increase for airflow around the rotor disc and far downstream, respectively. It is 

important that there is no velocity jump at the rotor disc, but the pressure increases ( p ) 

while airflow is passing through the rotor disc. 
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Figure 2.15: Momentum Theory for Axial Flight 

The continuity equation for the cylindrical control volume between stations 0-3 (see Fig. 

2.15) is 

0 0 3 3 3( )( )c q c cS v m S S v S v v                                                                             (2.59) 

The mass flow coming from the outer cylindrical control volume is obtained using the 

continuity equation (Eq. 2.59) and it is 

3 3qm S v                                                                                                                  (2.60) 
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The continuity equation between stations 2-3 is 

3 3( ) ( )c i cA v v S v v                                                                                                (2.61) 

Including mass flow coming from the outer cylindrical control volume and using entrance 

and exit pressures and velocities, the force equilibrium equation for the vertical direction 

is 

2 2 2
0 0 3 3 0 3 0 3 3 3 3 3( ) ( ) ( ) ( )c c c cT S v S p S v v S S v S S p p S S v v                   (2.62) 

Using the continuity equation (Eq. 2.61) and the thrust equation (Eq. 2.58), the pressure 

jump at the rotor disc by eliminating the cross section areas is 

 
   3 3

3
( )c i

c i
c

v v
p p p v v v

v v



   


                                                                         (2.63) 

The thrust without eliminating the cross sections is 

 3 3 3( ) c iT S p p A v v v                                                                                      (2.64) 

Applying the Bernoulli equation to the stations 0-1 and 2-3, the results are  

 221 1
2 2c c ip v p v v                                                                                           (2.65) 

   22
3 3

1 1
2 2c i cp p v v p v v                                                                         (2.66) 

To find an alternative equation for pressure jump at the rotor disc, subtract Eq. 2.66 from 

Eq. 2.65 and the result is 

3 3 3
1( )
2cp p p v v v                                                                                           (2.67) 
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Using Eqs. 2.67 and 2.63, the resulting equation related to the pressure jump at the rotor 

disc is 

  3
3 3 3

3

1( )
2

i
i

c

v vp p v v v
v v




  


                                                                                 (2.68) 

If it is assumed that 3p p , the induced velocity and rotor thrust are 

3
1
2

iv v ,       12 c i iT S v v v                                                                                  (2.69)                                                                                                                    

2.13.2 Working States for Vertical Flight 

     For hover the induced velocity using the thrust (Eq. 2.68) is 

0
12i

Tv
S

                                                                                                                  (2.70) 

For hover the thrust is also equal to the helicopter weight. For climbing this equality is 

not valid because of inertias and fuselage drag. However, if these effects are ignored, 

hover and climb can be better compared. Assuming that the thrust is equal to the 

helicopter weight for the climb (assumed to be a uniform climb), the induced velocity at 

the rotor disc is  

2
2
02 2

c c
i i

v vv v   
 
 
 

                                                                                                (2.71) 

There are two solutions for the induced velocity, but the positive solution is physically 

correct for climbing. Nondimesionalizing Eq. 2.71, the induced velocity for climbing is 

2

0 0 0

1 1 4
2 2

i c c

i i i

v v v
v v v

   
     
     
     

                                                                                (2.72) 
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Eq. 2.72 is valid for climb velocities ratios 0/ 0c iv v   and the rotor state is defined as 

normal working state for this particular case.  

     The thrust equation and induced velocity for descent ( cv  is used to emphasize 

descent) are given by 

 12 c i iT S v v v                                                                                                       (2.73) 

2

0 0 0

1 1 4
2 2

i c c

i i i

v v v
v v v

   
     
     
     

                                                                                (2.74) 

 

 

 

Figure 2.16: Working States for Axial Flight (Taken from [47] [p. 118]) 

     Using Eq. 2.74 it is seen that the induced velocity is real just for 0/ 2c iv v    and this 

particular condition is defined as windmill break state. All working states are illustrated 

in Fig. 2.16 (see [47] for more details).  
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2.13.3 Momentum Theory for Forward Flight 

     Applying the conservation of momentum and Bernoulli’s theory (see [48, 49, 51] for 

more details), the air velocity of the ultimate slipstream (see Fig. 2.17), rotor thrust, and 

mass flow rate are   

3 2 iv v ,   2 iT mv  ,   1m S U                                                                                  (2.75)                                                                                                      

 

 

 

Figure 2.17: Momentum Theory for Forward Flight 

     In Fig. 2.17 T, L, D are main rotor thrust, lift and drag, respectively and W is the 

helicopter weight. The velocity at the rotor disc U  is 

 22 2
iU u v w v                                                                                                  (2.76) 

The rotor thrust for forward flight using the momentum theory and the formula for U is 

 22 2
12 i iT S v u v w v                                                                                       (2.77) 
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For much faster forward velocities such that  2 2 2
iV u v w v     , the thrust equation 

is 

12 iT S vV                                                                                                                  (2.78) 

Nondimensionalizing the rotor thrust (Eq. 2.77) by the rotor tip path speed R  and using 

the fact that the disc area is 2
dR , the nondimensional thrust becomes  

 22 2
0 02 4 ˆ ˆ ˆ

2 d

T u v w
R

 
 

                                                                             (2.79) 

2.13.4 Linear Inflow Model 

     The main rotor sucks in air molecules while rotating. This effect is important for the 

main rotor aerodynamics and should be modeled. There are many approaches in the 

helicopter literature to include this effect. Since creating control oriented helicopter 

models is one of the major goals of this dissertation, linear static inflow model is 

selected. Its cyclic components, cλ , sλ ,  are  (see [51] [p. 160], Pitt&Peters) 

0
15 tan
23 2cλ λ  


 
 
 

,     0sλ  ,     1

0

ˆ
tan

ˆ
u

w







 
 
 

                                               (2.80) 

where   is the wake skew angle. The uniform component of the linear inflow, 0 , is 

computed numerically using the momentum theory and it is 

 22 2
0 02 4 ˆ ˆ ˆ

2 d

T u v w
R

 
 

                                                                           (2.81) 
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Figure 2.18: Wake Skew Angle 

     There is one other famous linear inflow approach in the helicopter literature, namely 

the dynamic inflow theory developed by Pitt&Peters. In this theory inflow parameters 

change with time as follows [47][p.128] 

1
0 0 T

c c L

s s M

λ λ C
M λ L λ C

λ λ C



 

        
                               





                                                                                (2.82) 

where the matrices M and L are the mass and gain functions, while TC , LC  and MC  are 

the thrust, rolling and pitching moment perturbations, respectively. For advanced 

aerodynamics oriented design this theory is widely used, but for this dissertation control 

oriented modeling is a priority and therefore, the linear static inflow theory is preferred. 

2.14 Model Simplification 

     At the end of this modeling process, implemented using Maple, we find the nonlinear 

governing equations of motion in implicit form: 

( , , ) 0f x x                                                                                                                  (2.83) 
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where 44f  , 41x  and 4  for straight level flight and 45f  , 41x  and 

4  for maneuvering flight. Note that the discrepancy between the size of  f  (44) and 

the size of x (41) is due to the three static downwash equations for straight level flight. 

For maneuvering flight there is an additional flight path angle algebraic equation.  

     For the helicopter model, 44 and 45 governing equations of motion are obtained for 

straight level and maneuvering flights, respectively. There are 9 fuselage equations (6 

Newton-Euler and 3 kinematic equations), 8 flapping equations, 8 lagging equations, 16 

blade flexibility equations (3 blade segments are used for blade flexibility), and 3 main 

rotor downwash equations for straight level flight. There is an additional flight path angle 

equation for maneuvering flight.        

     Unfortunately the number of terms in Eq. 2.83 is huge (of the order 510 ). To reduce 

this number a new ordering scheme (modified version of [57]) is applied. The idea 

behind this method is to neglect terms whose relative magnitude with respect to the 

largest term in an expression is smaller than a specific amount. To apply the ordering 

scheme to the dynamic equations, each term is assigned an order of magnitude based on 

physical considerations. For example the trim value of   is 3 6  degrees [51] [p. 174] 

and the trim value of   is small [51] [p. 195]. The trim values of collective   and   are 

generally larger than the trim values of cyclic   and  . The trim values of differential 

  and   are zero.  Therefore, their orders are chosen as 

0 0 0.2   rad,     0.1c s c s       rad,     0.1d d   rad                (2.84) 

     The orders of , ,u v w  are determined by ignoring , ,p q r . For many helicopters (e.g. 

Puma SA 330, Bo 105) the maximum forward speed is around 70 m/s. Therefore, the 
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order of u is chosen as 70 m/s. Because of severe drag limitation, the order of v is chosen 

as 35 m/s. Since w is generally smaller than 12 m/s, the order of w is chosen as 12 m/s. 

The order of blade tip speed is around 202.5 m/s for many helicopters. Therefore, the 

orders of nondimensional linear velocities are ˆ 0.35u  (70/202.5), ˆ 0.18v  (35/202.5), 

ˆ 0.06w  (12/202.5). The orders of p, q, r and ( ) , ( ) , ( )d/dt p d/dt q d/dt r  are chosen as 

(π/2)(1/s) and (44.4 π/2)(1 2/s ). The maximum main rotor speed is chosen 44.4 rad/s (for 

Bo 105) and it is used to nondimensionalize angular velocities and accelerations. This 

value is selected based on a literature review of several helicopters: 44.4 rad/s was the 

maximum value over all of the helicopters with published data. The downwash at hover 

is assumed to be maximum. This was decided after many numerical experiments carried 

out by us before applying the ordering scheme.  Therefore, 0 ’s order is chosen as 0.06 

(12/202.5). The order of c  is chosen same with 0 . The bounds of main rotor control 

inputs are given in [54] [pp. 684-701]. The maximum values for 0  and  c  are around 20 

degrees. Since c  takes negative and positive values and s  has same order with c ,  

their orders are chosen as 

0 0.35  rad,         0.175c  rad,        0.175s  rad                                               (2.85)                                                              

     Before applying the ordering scheme, the dynamic equations are nondimensionalized 

[48] [p. 142]. The order of each helicopter quantity in nondimensional fashion is listed in 

Table 2.1. The orders of lumped system parameters are defined using energy approaches 

and this approach is summarized next. First, the total force acting on a blade was found 

using rigid blade model parameters and it was distributed linearly over the blade span. 

Using Euler-Bernoulli beam theory, the corresponding weighted (i.e. averaged) 
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displacement distribution was found for each of the flexible blade segments (the root 

segment was assumed rigid). Then these averages are used to compute the orders for 

flapwise bending angles (note: the average is placed at the midpoint of each segment). 

Finally, the orders of flapwise bending spring stiffness coefficient and damper damping 

ratio were obtained using orders of flapwise bending angles, flapping angles and flapping 

spring stiffness coefficient (It was assumed that there is an inverse relation between the 

artificial spring stiffness coefficient and bending angle, see Appendix A.1 for more 

details).  
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Table 2.1: Nondimensional Orders of Helicopter Parameters  

Symbol(s) Order Symbol(s) Order Symbol(s) Order 

û  0.35 
** *

2 2 2, ,c c c    0.15 k  0.25 

v̂  0.18 
** *

2 2 2, ,s s s    0.15 c  0.1 

ŵ  0.06 
** *

2 2 2, ,d d d    0.15 Tk  0.064 

ˆ ˆ ˆ, ,p q r  0.035 
** *

3 3 30 0 0, ,    0.45 e 0.15 

* * *
ˆ ˆ ˆ, ,p q r  0.035 

** *

3 33 , ,cc c    0.225 0 , c   0.06 

0  0.35 
** *

3 3 3, ,s s s    0.225   9 

c , s  0.18 
** *

3 3 3, ,d d d    0.225 cos( ) 1 

T  1 
** *

0 0 0, ,    0.2 sin( ) 1 

tw  -0.14 
** *

, ,c c c    0.1 d̂  0.4 

** *

0 0 0, ,    0.2 
** *

, ,s s s    0.1 l̂  1.8 

** *
, ,c c c    0.1 

** *
, ,d d d    0.1 ẑF  0.07 

** *
, ,s ss    0.1 k  0.2 x̂F  0.57 

** *
, ,d d d    0.1 c  0.1 ẑT  0.35 

** *

2 2 20 0 0, ,    0.3 k  0.25 x̂T  1.2 

              (
*

( / ) ( )x d d x  ) 

 

 

 



 48 

Table 2.2: Number of Terms Before and After Applying The New Ordering Scheme 

     This ordering scheme implemented using Maple resulted in significant reduction in 

the number of terms. Table 2.2 gives these numbers for external forces (X, Y, Z) and 

moments (L, M, N) before and after applying the ordering scheme to helicopter model 

with 1% specific amount. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 X Y Z L M N 

Original 182444 182444 74489 326312 326312 226157 

New 3490 3410 385 1700 1690 2471 
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CHAPTER 3: 

Trim, Linearization, and Model Validation 

3.1 Trim 

3.1.1 Straight Level Flight 

     For this particular case trim is defined as the condition for which straight level flight 

with constant velocity is achieved. For the helicopter model 25 trim equations (3 force 

and 3 moment helicopter equations, 8 flapping and lagging equations, 8 flapwise bending 

equations, and 3 main rotor downwash equations) and 25 unknowns are obtained for 

straight level flight (i.e. 0=0 equations are ignored). The trim values of angular velocities 

and yaw angle are equal to zero. The helicopter linear velocities can be written as 

functions of  AV  and roll and pitch angles of the helicopter. The vector of trim unknowns 

in nondimensional fashion is 

0 0 0 2 0 2 2 2 3 0 3 3 3 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00
,[ , , , , , , , , , , , , , , , , , , , , , , ,

Euler

c s T A A c s d c s d c s c s d cd

controls flapping lead lagging dflapwise bending

x                         




   

]T

ownwash


             

(3.1)                  

where all trim angles are given in radians. Matlab’s fsolve command was used to solve 

the 25 nondimensionalized trim equations for hover and different straightforward 

velocities. The results thus found were verified by inserting them into the governing 

equations of motion obtained after the application of the new ordering scheme. Very 

small numbers (around 1010 ) were obtained showing that the trimming procedure is 

correct. For some specific flight conditions, such as hover ( AV = 1 kt is assumed hover for 

numerical reasons) and AV = 80 kts, the trims are 
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0

0 0 2 0 2 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2686,0.0094,-0.0255,0.0952 -0.0057,0.0238 0.0472, 0.0230,0.0021,0 0.0681,0.0283,0.0032,0

0.

[ , , , ,
, , , , , , , , , ,

hover

c s T A A c s d c s d

x
             

    

3 0 3 3 3 0 0 00 0 0 0 0 0 0 0 0 0

0855,0.0319,0.0045,0 0.0172,-0.0009,-0.0027,0 0.0237,0.5579,0.0014], ,
, , , , , , , ,

T

c s d c s d c          
  

                                           

                                                                                                                                                                   (3.2) 

0

0 0 2 0 2 2 20 0 0 0 0 0 0 0 0 0 0 0 0 0

0.2493,0.0243,-0.1147,0.0594 -0.0035,0.0312 0.0524,0.0327,-0.0005,0 0.0660,0.0432,-0.0097,0

0

[ , , , ,
, , , , , , , , , ,

80kts

c s T A A c s d c s d

x
             

    

3 0 3 3 3 0 0 00 0 0 0 0 0 0 0 0 0

.0729,0.0553,-0.0276,0 , 0.0123,-0.0048,-0.0048,0 1.4617,0.0162,0.0298],
, , , , , , , ,

T

c s d c s d c          
  

                                        

                                                                                                                                                                   (3.3)      

3.1.2 Maneuvering Flight 

     In this study level banked turn without sideslip and helical turn without sideslip are 

examined (see [45, 47, 51, 54, 58-60] for more details). For maneuvering flight the 

aircraft linear velocities are (see Fig. 3.1) 

  cos( ) cos( ) sin( ) sin( ) cos( )
TT

A F F A F A F Fu v w V V V                            (3.4) 

were fuselage angle of attack,  F , and sideslip,  F , are given by 

 1tan /F w u  ,       1sin / AF v V                                                                           (3.5) 

 

 

 

Figure 3.1: Fuselage Angle of Attack and Sideslip 
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     Level banked turn is a maneuver in which the helicopter banks towards the center of 

the turning circle. For helicopters the fuselage roll angle, A , is in general slightly 

different than the bank angle, B . For  coordinated banked turn BA  , but this is not the 

focus of this work. A picture describing these angles for a particular case ( 0A  ) is 

given in Fig. 3.2, where resultantF  is the sum of the gravitational force (W) and the 

centrifugal force ( cfF ). 

 

 

 

Figure 3.2: Level Banked Turn 

     Helical turn is a maneuver in which the helicopter moves along a helix with constant 

speed (see Fig. 3.3).  
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Figure 3.3: Helical Turn 

In a helical turn, the flight path angle is different than zero being given by 

sin( ) sin( ) cos( ) cos( ) sin( ) cos( ) sin( ) cos( ) cos( )sin( ) cos( )FP A AA F F A F A F F                  (3.6) 

A picture describing the flight path angle for a particular case ( 0A  , 0F  ) is given 

in Fig. 3.4. 

  

 

 

Figure 3.4: Flight Path Angle 
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Note that 0A   is a clockwise turn and 0A   is a counterclockwise turn (viewed from 

the top) while 0FP   is referring to the ascending (climbing) flight and 0FP   is 

referring to the descending flight.  

     In this dissertation, trim is also defined as the condition for which level banked or 

helical turn with constant AV  and zero sideslip is achieved. For the helicopter model 29 

trim equations (i.e. 0=0 equations are ignored) and 29 unknowns were obtained for 

particular maneuvers (level banked or helical turn). The vector of trim unknowns in 

nondimensional fashion for maneuvering flight is 

0 0 0 0 2 00 0 0 0 0 0 00 0 0 0 0 00 0

2 2 2 3 0 3 3 3 0 00 0 0 0 00 00 0

ˆ ˆ ˆ, , , , , , , , , , , , , , , , , ,

, , , , , , , , , ,

[

]
c s T c s c sA A d d

T
c s c s cd d F

x p q r              

          


            (3.7)                               

Matlab’s fsolve command was used to solve these 29 trim equations. The results thus 

found were verified by inserting them into the governing equations of motion obtained 

after the application of the new ordering scheme. Very small numbers (around 1010 ) 

were obtained showing that the trimming procedure is correct for these particular 

maneuvers. Numerous numerical experiments resulted in trim values that are in the range 

reported in the literature (see references in the model simplification sub-section). For 

some specific maneuvering flight conditions, such as hover and AV 80 kts with 

0.1A  rad/s, 0.1FP  rad, the trims are 

0 0 0 00 0 00 0 0

0 0 00 0

0
, , , ˆ ˆ ˆ ,, ,

, , ,

0.2695,0.0094, 0.0267,0.0909,0.0001,0.0037,0.1246, 0.0009,0.0246,

0.0472,0.0236,0.0016,0,0.0173, 0.0010,

[
c s T A A

c s d

hover
p q r

x
     

   

  



  


0 2 0 20 0 00 00

2 2 3 0 3 3 3 0 00 0 0 0 00 00 0

, , , ,

, , , , , , ,

0.0028,0,0.0681,0.0290,

0.0027,0,0.0854,0.03285,0.0038,0,0.0579,0.0026,0.0433,0.1246]
c s cd

s c s c Fd d

     

         

 

  
T

                                (3.8) 
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0 0 0 00 0 00 0 0

0 0 00 0

0
, , , ˆ ˆ ˆ ,, ,

, , ,

0.2253,0.0149, 0.0708,0.0090,0.0001,0.0014,0.0034,0.3883, 0.0177,

0.0573, 0.0003,0.00205,0,0.0062, 0.0

[
c s T A A

c s d

80kts
p q r

x
     

   

  

 

  


0 2 0 20 0 00 00

2 2 3 0 3 3 3 0 00 0 0 0 00 00 0

, , , ,

, , , , , , ,

033, 0.0006,0,0.0700,0.0030,

0.0094,0,0.0738,0.0105, 0.0293,0,0.0173,0.0298,1.3977,0.0890

c s cd

s c s c Fd d

     

         



 

 

   ]T


                                (3.9)              

3.2 Linearization 

     After finding trim values, the helicopter model was linearized using Maple, yielding 

continuous linear time-invariant (LTI) systems. For the helicopter model there are 9 

fuselage and 32 main rotor states (there is an additional flight path angle equation for 

helical turn). There are 3 main rotor and 1 tail rotor control inputs. The implicit 

linearization method is summarized next. For a given set of governing equations of any 

system  

, , 0( )x xf                                                                                                                   (3.10) 

any linearized state-space model is derived using the mathematical relations 

0
trim trim trim

d x x
x x
f f ff      

       
            







                                                         (3.11) 

1 1

0
trim trim trim trim

x x
x x x
f f f f  

 

  
          
                 


 




                                            (3.12) 

x A x B                                                                                                             (3.13) 

where 

1

trim trim

A
x x
f f



 
    
       

 ,   
1

trim trim

B
x
f f



 
    
        

                                               (3.14) 
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     Tables 3.1 and 3.2 summarize the state and control vectors for the linearized models. 

Table 3.1: State Vector of Linearized Models 

State Variable Quantity State Variable Quantity 

1x  û  21x  20x  

2x  v̂  22x  1s  

3x  ŵ  23x  22x  

4x  p̂  24x  d  

5x  q̂  25x  24x  

6x  r̂  26x  2 0  

7x  A  27x  26x  

8x  A  28x  2 c  

9x  A  29x  28x  

10x  0  30x  2 s  

11x  10x  31x  30x  

12x  1c  32x  2 d  

13x  12x  34x  3 0  

14x  1s  35x  34x  

15x  14x  36x  3 c  

16x  d  37x  36x  

17x  16x  38x  3 s  

18x  0  39x  38x  

19x  18x  40x  3 d  

20x  1c  41x  40x  
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Table 3.2: Control Vector of Linearized Model 

Control Variable Quantity Control Variable Quantity 

1u  0  3u  1s  

2u  1c  4u  T  

3.3 Structure of State-Space Models 

     The structure of the state space model is given in Eqs. 3.15 and 3.16. The “*” 

elements in A and B matrices represent nonzero numbers. 
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* * * * * * 0 * 0 * * * * * * * * * * * * * * * *
* * * * * * * * 0 * * * * * * * * * * * * * * * *
* * * * * * * * 0 * * * * * * * * * * * * * * * *
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 * * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

A 

0 0
0 0 0 0 * * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * 0 0 0 0 0 0 * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * *

0 *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * *

* * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 * * 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 0 0 0 0 0 0 * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 0 0 0 0 0 0 * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * * * * * 0 0 * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * 0 0 0 * * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 * 0 0 0 0 0 0 0 0
0 0 0 0 0 0 * * * 0 0 0 0 0 * *
0 0 0 0 0 0 0 0 0 * 0 0 0 0 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 * 0

0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 * * 0 0 0 0 0 0 * *

0 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 * 0 0
* * * * * * * * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 *
0 0 0 0 0 0 * * 0 0 0 0 0 0 * *
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3.4 Model Validation 

     Puma SA 330 was used to validate the models previously developed with most 

technical data taken from [47] (see Appendix A.2). A good match with results in the 

literature for many flight conditions was ascertained. For example, most of the flight 

dynamics modes (eigenvalues of the linearized systems) of the helicopter model for hover 

and AV = 80 kts, shown in Table 3.3, match well with the results reported in [47] [pp. 

282-287]. The 4th mode does not match well due to some modeling discrepancy between 

the control oriented helicopter model and Helisim, however, the qualitative behavior is 

similar (exponentially stable mode). All the modes in this section are given for straight 

level flight; see Appendix B to ascertain how they change for maneuvering flight. 

Table 3.3:  Flight Dynamic Modes Comparison 

     The qualitative behavior of flapping and lagging modes is also identical with the one 

described in [47] [p. 137]. For example, the flapping modes are much farther away from 

the imaginary axis compared to the lagging modes. Both the flapping and lagging modes 

HOVER 80 KTS 
MODE 

Control Oriented 
Model 

Helisim Control Oriented 
Model 

Helisim 

1st 0.1753  0.5816i 0.2772  0.5008i -0.5294  2.5879i -0.1854  1.0546i 

2nd 0.0779  0.4357i -0.0410  0.5691i -0.0166  0.1572i -0.0085  0.2074i 

3rd  -0.1514 -0.2697 -0.02752 -0.1358 

4th  -1.1540 -0.3262 -1.0737 -1.5163 

5th  -0.9987  0.3405i -1.2990  0.2020i -1.1014  2.2242i -0.9252  1.0503i 
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change slightly with AV , and the magnitude of the frequency bound for the flapping 

modes is larger than the one for the lagging modes (see Figs. 3.6 and 3.7). 
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Figure 3.5: Flight Dynamics Modes for Straight Level Flight 
(Hover and AV =80 kts)  
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Figure 3.6: Flapping Modes for Straight Level Flight 

(Hover and AV =80 kts) 
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Figure 3.7: Lead-Lagging Modes for Straight Level Flight 

(Hover and AV =80 kts) 
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Figure 3.8: Typical Nondimensionalized Flapping and  
Lead-Lagging Modes ([47] [p. 137]) 
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CHAPTER 4: 

Variance Constrained Controllers 

4.1 Controllability and Observability of Linear Time Invariant (LTI) Systems  

     Consider a continuous LTI system  

( ) ( ) u( )p p p px t A x t B t  ,   ( ) ( ) u( )p p py t C x t D t                                                       (4.1)      

where ( )px t  is the state vector, u  is the control vector, and y is the output vector. The 

state ( )px t  is said to be controllable at instant 0t t  if there is a piecewise continuous 

input u(t) that drives the state from the initial state to any final state ( )p fx t  in a finite 

time interval 0[ , ]ft t . If every state 0( )px t  of the system (i.e. Eq. 4.1) is controllable in a 

finite time interval, the system is said to be controllable. The system (Eq. 4.1) is 

controllable if and only if (see [61] [pp. 716-717]) 

 2 1..... n
p p p p p p prank B A B A B A B n                                                               (4.2) 

where n is the number of system states. 

     For the system in Eq. 4.1 , the state 0( )px t  is said to be observable if given any input 

u(t), there exists a finite time 0ft t  such that the knowledge of u( )t  for 0 ft t t  , 

matrices A, B, C, D, and the output y(t) for 0 ft t t   are sufficient to determine 0( )px t . 

If all the states of the system are observable for a finite time ft , the system is called 

observable. The system (Eq. 4.1) is observable if and only if (see [61] [pp.719-720]) 

 2 1........
Tn

p p p p p p prank C C A C A C A n                                                         (4.3)    
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     A LTI system (Eq. 4.1) is stabilizable if the uncontrollable modes are stable, and 

detectable if the unstable modes are observable [62][p. 21].  

4.2 Linear Quadratic Regulator (LQR) Controllers  

     For a given controllable or stabilizable and observable or detectable LTI system, LQR 

controller (finite horizon) minimizes the quadratic cost function [62][p. 9] 

T

0
[ ( ) ( ) u( ) u( )] (T) (T)T T T

p p p pV x Q x R dt x x      M                                             (4.4) 

where Q and M  are positive semidefinite matrices and R is positive definite matrix. 

Solution of Eq. 4.4 gives a state-feedback control law: 

u( ) ( )pt K x t                                                                                                                (4.5)   

     When T approaches infinity, the problem (Eq. 4.4) is called the steady-state LQR 

problem [62][pp. 20,21]. The steady-state solution can be found by solving the algebraic 

Riccati equation (ARE)  

10 T T T
p p p p p pA P PA PB R B P C QC                                                                             (4.6) 

Here P is the positive definite steady-state solution of ARE. The optimal control law is 

*
1u( ) ( )T

pt R B P x t                                                                                                       (4.7) 

This control law makes the closed-loop system asymptotically stable. 
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4.3 Linear Quadratic Gaussian Regulator (LQG) Controllers 

     For the LQR it is assumed that all the states are measured and there is no noise in the 

system, but this is not realistic for many physical systems. Therefore, another controller 

called “LQG” is developed. For a continuous LTI system 

( ) ( ) u( )p p p p p px t A x t B t D w   ,    p py C x ,     p pz M x v                                    (4.8)     

where z represents sensor measurements, pw and v are zero-mean uncorrelated Gaussian 

white noises with intensities of W and V,  respectively. 

     The LQG control consists of two problems (separation principle [62][pp. 108-113]). 

The first problem is estimation of all the states ( )px t  using Kalman filter (see [62][pp. 

103-107] for more details) and the second problem is solving LQR using the estimated 

states ˆ ( )px t . 

4.4 Variance Constrained Controllers  

     Because helicopters are subject to input and output limitations and a key requirement 

is minimization of control energy, output variance constrained control (OVC) and input 

variance constrained control (IVC) [12-19] are investigated. The OVC problem is 

summarized next. Given a continuous LTI system (Eq. 4.8) and a positive definite input 

penalty 0R  , find a full order dynamic controller 

c c cx A x Fz  ,   u cG x                                                                                               (4.9) 

to solve the problem 

, ,
u u

c

T
A F G
min E R                                                                                                             (4.10) 
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subject to 

2 2 , 1, ....,i i yi nE y                                                                                                 (4.11) 

where 2
i  is the upper bound imposed on the i-th output variance, and yn the number of 

outputs. OVC solution reduces to a LQG problem by choosing the output penalty 0Q   

depending on the inequality constraints. An algorithm for the selection of Q is presented 

in [15,16]. After converging on Q, OVC parameters are 

c p p pA A B G FM   ,     1T
pF XM V  ,     1 T

pG R B K                                           (4.12) 

where X and K are solutions of two algebraic Riccati equations:  

10 p
T T T
p p p p p pXA A X XM V M X D W D                                                                   (4.13) 

10 T T T
p p p p p pKA A K KB R B K C QC                                                                        (4.14) 

     IVC problem is dual of OVC: for a given output penalty 0Q  , a full order dynamic 

controller (Eq. 4.9) for Eq. 4.8 must be found to solve  

, ,c

T
A F G
min E y Qy                                                                                                             (4.15) 

subject to 

2 2
uu , 1,....,i iE i n                                                                                             (4.16) 

where 2
i  is the upper bound variance imposed on the i-th input, and un  is the number of 

inputs. IVC solution reduces to a LQG problem by choosing 0R  . An algorithm for the 

selection of R is presented in [15]. After converging on R, IVC is obtained using Eq. 

4.12. Compared to LQG, OVC and IVC provide an intelligent way of choosing Q and R, 
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which guarantees satisfaction of constraints. If the 2
i  and 2

i  constraints are exactly 

satisfied (equalities are met) using specific variance constrained algorithm, these 

constraints are called hard constraints.  

4.5 OVC and IVC Results 

     OVC and IVC are evaluated for the helicopter model for several flight conditions. 

Results for maneuvering flight conditions are summarized next (see Appendix D.1 for 

straight level flight results). 

     For the numerical experiments reported next the sensor measurements were helicopter 

linear velocities, angular velocities and Euler angles. The noise intensities were 

7 710 , 10 9W I V I  41 . For numerous maneuvering flights (i.e. level banked turn and 

helical turn with different AV , A  and FP ), OVC performance is evaluated. Closed loop 

stability robustness is thoroughly investigated. For this purpose the following scenarios 

were considered: a) a controller designed for a nominal flight condition (e.g. 40AV  kts, 

0.1A  rad/s, 0.1FP  rad) is used for different AV  (e.g. 20AV  kts, 0.1A  rad/s, 

0.1FP  rad, etc.), the key question being “Does this controller stabilize flight conditions 

that are different from the nominal one?”; b) a controller designed for an “inertial certain” 

model (i.e. when there are no variations in helicopter inertial parameters) is used on the 

same type of model which experiences uncertainties in all helicopter inertial parameters 

(helicopter mass and helicopter inertia matrix elements). The key question is “Are the 

corresponding closed loop systems stable for these significant modeling uncertainties?” A 

synopsis of scenarios is given in Table 4.1 while Table 4.2 summarizes some results that 

answer these questions. 
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     Description of scenarios studied is given next. The 1st OVC is designed for the 

helicopter model which is linearized for 40AV  kts, 0.1A  rad/s, 0.1FP  rad, 

204.73turnR  m and it is evaluated for the same model for different AV  (line 1 in Table 

4.2). The 2nd OVC is designed for the helicopter model which is linearized for 80AV  kts, 

0.1A  rad/s, 0.1FP  rad, 409.46turnR  m and evaluated for the same model for 

different AV  (line 2 in Table 4.2). The 3rd OVC is identical with the 1st OVC, but it is 

evaluated for control model with 10% uncertain helicopter inertial parameters for 

different AV  (line 3 in Table 4.2). The 4th OVC is identical with the 2nd OVC, but it is 

evaluated for the helicopter model with 10% uncertain helicopter inertial parameters for 

different AV  (line 4 in Table 4.2). The design parameters and convergence properties are 

described next. 

Table 4.1: OVC Scenarios 

 

 

 

 

 

 
                      (“Inertial Certain” refers to the situation when there are no variations in helicopter inertial parameters) 
 
 

 

 

 Design Model 
Nominal 

Design AV  Evaluation Model Evaluation AV  

1st Inertial Certain  40 kts Inertial Certain Hover to 80 kts 

2nd Inertial Certain 80 kts Inertial Certain Hover to 80 kts 

3rd  Inertial Certain 40 kts 10% Helicopter Inertia 
Variation Hover to 80 kts 

4th  Inertial Certain 80 kts 10% Helicopter Inertia 
Variation Hover to 80 kts 
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Table 4.2: Stability Robustness Analysis for OVC 

 
(CL: Closed Loop, OL: Open Loop, L: Length of Stability Interval, ES: Exponentially Stable, MS: Marginally Stable, U: Unstable) 

   (L is the number of velocity intervals for which the CL system is ES) 

4.5.1 OVCs Design 

     For all of the numerical experiments reported next, the convergence tolerance for the 

OVC algorithm was 610 , while 2  was set to  410 1 1 0.1 . All OVCs were designed 

using the helicopter Euler angles as the outputs while the inputs were all four helicopter 

controls. After 4 iterations the OVC design algorithm converges and the 1st OVC satisfies 

these constraints with the convergence error 7*7.2661 10 . After 6 iterations, the 2nd OVC 

satisfies these constraints with the convergence error 7*2.9103 10 . The 3rd  and 4th OVCs 

are identical with the 1st  and 2nd  OVCs respectively and they are evaluated for the 

helicopter model with 10% helicopter inertial parameters reduction (in Table 4.2) for 

different AV .  

     In Fig. 4.1 the output and input variances are shown for different AV   using the 1st 

OVC while in Fig. 4.2 the output and input variances are shown for different helicopter 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 
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inertia variations using the 1st OVC. In this figure /I I  refers to the relative variation in 

all helicopter inertial properties (all of them are changed by the same percentage). Note 

that output and input variance figures (i.e. Figs. 4.1, 4.2, 4.4, and 4.5) are found using 

fixed F and G gains and step 3 in Appendix B for maneuvering flight. 

4.5.2 OVC Discussion 

     It can be easily seen from Table 4.2 that for the helical turn with 0.1A  rad/s, 

0.1FP  rad the OVCs are robustly stable with respect to variations in AV . The length of 

stability intervals (L) is also large (1st and 2nd lines in Table 4.2). Moreover, OVCs are 

robustly stable with respect to helicopter inertial properties variation (3rd and 4th lines in 

Table 4.2). Extensive numerical experiments show that OVCs are also robustly stable 

both with respect to variations in AV  and inertial properties for level banked turns and 

different helical turns (see Appendix D.2). However, it is remarked that L decreases if 

different values for output constraints are enforced. For example, if for the scenarios 

described before 2  is reduced to  2 610 1 1 1  , L decreases to 4 and 3 for the 1st  

and 2nd lines respectively in Table 4.2. Similarly, if 2  is increased to  2 310 1 1 1   

, L decreases to 6 for the 1st  and 2nd lines in Table 4.2 (see Appendix D.2 for more 

details). These results show that there is no direct correlation between 2  and L  (i.e. the 

dependency between 2  and L is very nonlinear).  

     Clearly from Figs. 4.1 and 4.2 the output variance constraints are satisfied at the 

nominal flight conditions. If one wants to ensure satisfaction of constraints over larger 

velocity and inertial parameters variation intervals, a safety factor can be introduced in 
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the design. Input variances also display small values. In Fig. 4.3 behaviors of helicopter 

Euler angles and all controls are given using 1st OVC. 
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Figure 4.1: Output and Input Variances for The 1st OVC 
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Figure 4.2: Output and Input Variances for The 3rd OVC 
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Figure 4.3: Responses of Euler Angles and All Controls Using The 1st OVC 
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4.5.3 IVCs Design 

     IVCs are evaluated in a similar manner with OVCs. Stability robustness results are 

summarized in Table 4.3.  

   Table 4.3: Stability Robustness Analysis for IVC 

     In all of the numerical experiments reported next the convergence tolerance for the 

IVC algorithm was 710 , while 2  was set to  510 1 1 1 1 . All IVCs were designed 

using all four helicopter controls, while the outputs were all three helicopter Euler angles. 

After 14 iterations, the 1st IVC satisfies these constraints with the convergence error 

*
86.0214 10 . After 22 iterations, the 2nd IVC satisfies these constraints with the 

convergence error *
88.3133 10 . The 3rd and 4th  IVCs are identical with 1st and 2nd  IVCs 

respectively and they are evaluated for the helicopter model with 10%  helicopter inertial 

quantities reduction for different AV . 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U U U 8 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 
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     In Fig. 4.4 the output and input variances are shown for different AV   using the 1st 

IVC while in Fig. 4.5 the output and input variances are shown for different helicopter 

inertia variations using the 1st IVC. 

4.5.4 IVC Discussion 

     Similarly with the OVCs, IVCs are also robustly stable both with respect to variations 

in AV  and helicopter inertial properties for the helical turn with 0.1A  rad/s, 

0.1FP  rad and there is no direct correlation between the magnitudes of input 

constraints ( 2 ) and the length of stability interval (L). Extensive numerical experiments 

show that IVCs are also robustly stable both with respect to variations in AV  and inertial 

properties for level banked turns and different helical turns (see Appendix D.2).  

     Clearly from Figs. 4.4 and 4.5 the output variance constraints are satisfied at the 

nominal flight conditions. Similarly with OVC if one wants to ensure satisfaction of 

constraints over a larger velocity interval, a safety factor can be introduced in the design. 

Output variances also display small values. In Fig. 4.6 behaviors of helicopter Euler 

angles and all controls are given using 1st IVC. 
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Figure 4.4: Output and Input Variances for The 1st IVC 
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Figure 4.5: Output and Input Variances for The 3rd IVC 
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Figure 4.6: Responses of Euler Angles and All Controls Using The 1st IVC 
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4.6 Sensor Failure with Variance Constrained Controllers 

     Here a new idea is investigated, namely adaptive switching between controllers which 

are adequate for different sets of sensors, but satisfy the same performance requirements. 

The question analyzed next is if the controller can be changed adaptively to satisfy the 

same variance constraints when the set of measurements changes due to sensor failure. 

Therefore, in the following sections OVC and IVC designs are investigated with different 

sets of measurements. 

     For this purpose the same scenarios as in section 4.5 were examined. The 1st to 4th sets 

of OVCs and IVCs were redesigned using the same models (see Table 4.1) and the same 

constraints (i.e.  2 410 1 1 0.1   for OVC,  2 510 1 1 1 1   for IVC) like for 

the designs which do not experience sensor failure. The sensor failure scenarios 

considered are summarized in Tables 4.5-4.7 (see Table 4.4 for details). The first column 

in each table displays the measurements that are no longer available due to sensor failure. 

For example, in the first line of Table 4.5, A  and A  measurements from the initial set 

of 9 measurements ( , , , , , , , ,A A Au v w p q r    ) are not available thus reducing the set of 

measurements to 7 ( , , , , , , Au v w p q r  ). 

     The first important observation is that the number of iterations required to design 

OVCs and IVCs with sensor failure is usually higher than the number of iterations 

required when sensor failure does not occur. For example, for the first sensor failure 

(when A  and A  measurements are not available) the number of iterations for 

convergence of the 1st and 2nd OVCs is 18 compared to 4 and 6 iterations when sensor 

failure does not occur.  
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     Closed loop stability robustness with respect to variations in AV  and helicopter inertial 

properties is also examined as in section 4.5. The results are summarized in Tables 4.5 

and 4.6. For example, “Hover to 80kts” means that the closed loop system is 

exponentially stable for [0,80]AV  kts and 0.1A  rad/s, 0.1FP  rad. It can be seen 

from these tables that the length of the stability interval (L) for all the sensor failure 

scenarios is close to L when sensor failure does not occur. 

Table 4.4: Sensor Failure Scenarios 

 

 

 

 

 

 

 

 

 

 

Case Active Sensors 
#  Active 
Sensors 

Failed Sensors 
#  Failed 
Sensors 

1st Failure 
, , ,
, , , A

u v w
p q r   7 ,A A   2 

2nd  Failure 
, , ,
, ,A A A

p q r
    6 , ,u v w  3 

3rd  Failure 
, , ,
, ,A A A

u v w
  

 6 , ,p q r  3 
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Table 4.5: Closed Loop Stability Robustness for OVC (CL is ES ) 

Table 4.6: Closed Loop Stability Robustness for IVC (CL is ES ) 

     Extensive numerical experiments show that the behaviors of output and input 

variances with respect to variations in AV  and helicopter inertial properties with sensor 

failure are qualitatively similar with the behaviors observed when sensors do not fail (see 

Appendix E).  

 

 

 

Failed Sensors 1st 2nd 3rd 4th 

1st ( , )A A   Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

2nd ( , , )u v w  Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

3rd ( , , )p q r  Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

Failed Sensors 1st 2nd 3rd 4th 

1st ( , )A A   Hover to 80 kts Hover to 80 kts Hover to 70 kts Hover to 80 kts 

2nd ( , , )u v w  20 kts to 80 kts 30 kts to 80 kts 20 kts to 80 kts 30 kts to 80 kts 

3rd ( , , )p q r  Hover to 70 kts Hover to 80 kts Hover to 70 kts Hover to 80 kts 
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Table 4.7: Control Energy Comparison 

 

 

 

 

 

 

 

     The control energy (i.e. cost) of resulting OVCs and IVCs is summarized in Table 4.7. 

It can be seen that the control energy of OVCs and IVCs with sensor failure is higher 

than the control energy when sensor failure does not occur. Note that the control energy 

of OVC and IVC design is found using (see [17]) 

 u uT T
ctraceJ E R RGX G                                                                                      (4.17) 

where G and cX  are computed using OVC and IVC algorithms (see Appendix C). For 

OVC R is selected by the user, whereas for IVC it is computed using IVC algorithm. 

     A final important observation is that the results (i.e. number of iterations, stability 

robustness, input and output variances, and control energy) with sensor failure are 

qualitatively similar for level banked turns and different helical turns (see Appendix E). 

 

 OVC Cost IVC Cost 

Failed Sensors 1st and 3rd 2nd  and 4th 1st and 3rd 2nd  and 4th 

1st ( , )A A   0.003607 0.004830 0.001944 0.0006781 

2nd ( , , )u v w  0.001910 0.002633 0.002541 0.0005914 

3rd ( , , )p q r  0.002225 0.0022632 0.001587 0.0004429 

      (no failure) 0.001365 0.001526 0.001449 0.0003809 
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4.7 Adaptive Switching with Variance Constrained Controllers      

     The behavior of the closed loop system when switching between controllers occurs due 

to 1st sensor failure scenario for 1st OVC and IVC is examined using Matlab. Simulations 

(initial conditions are chosen as zero deviation from trim conditions) showed in Figs. 4.5-

4.8 indicate that 1st OVC and IVC designs are robust to 1st sensor failure. In these figures 

the bold vertical line represents the instant when ,A A   measurements fail. The sensor 

failure occurs when   200rad (or t=7.4s). In Figs. 4.7 and 4.8, responses of helicopter 

Euler angles and all controls are given using 1st OVC and 1st IVC, respectively. Extensive 

numerical experiments show that OVC and IVC are robust to other sensor failures (i.e. 

2nd and 3rd failures in Tables 4-6). Similar results are found for level banked turns and 

different helical turns (see Appendix E). 
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Figure 4.7: OVC Switching 
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Figure 4.8: IVC Switching 
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4.8 Other Safe Switching Between Controllers Approaches  

     In [63] an approach to detect and isolate the aircraft sensor and control 

surface/actuator failures affecting the mean of the Kalman filter innovation sequence was 

presented on a F-16 fighter aircraft dynamic model. A robust Kalman filter (RKF) was 

designed in order to isolate the detected sensor and control surface failures and this RFK 

satisfies the Doyle-Stein condition. The use of the RKF was very useful in the isolation of 

sensor and control surface failures as it was insensitive to the latter failures. 

     In [64] the iterative feedback tuning (IFT) safe switching algorithm was extended for 

the case of multivariable nonlinear systems with unknown descriptions. The proposed 

scheme incorporates multivariable IFT techniques, with a multivariable step-wise safe 

switching algorithm. Using the IFT algorithm for tuning safe switching controllers 

eliminated the need for identifying the MIMO (Multi-Input Multi-Output) linear models 

that describe the plant around trim points. Instead of that, specific experiments proposed 

by multivariable IFT have to be performed, in order to tune the parameters of “common” 

MIMO controllers, which are controllers that satisfy the design requirements 

simultaneously for two MIMO linear systems corresponding to adjacent trim points. 

Controller tuning is based on the optimization of a cost criterion appropriately defined, so 

as to express the desired closed-loop performance characteristics simultaneously for two 

adjacent operating areas. 

     In [65,66] a fundamentally different approach than in [64] was proposed. The 

following situation was considered: given a control system with an LPV (linear parameter 

varying) plant and a stabilizing LPV controller, switching to new controller to get better 

performance was performed. This approach does not require a plant model, requires only 
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closed-loop data with only a small amount of external excitation, uses standard 

identification methods, and gives as few incorrect analysis results. 

     In [67] the goal of stabilizing an uncertain plant by means of switching through an 

infinite candidate controller set was solved, provided that feasibility (existence of at least 

one stabilizing solution in the candidate controller set) holds. The focus was on how a 

given candidate controller set should be pruned based on data in order to adaptively 

converge to a controller in the candidate set that achieves and maintains stable behavior 

and acceptable performance. Though this data driven process requires no prior 

knowledge of the plant model, this does not mean that their formulation is model-free. 

Plant models, when available, play an essential role in determining and designing the 

candidate controller set. 
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CHAPTER 5: 

Robustness Tools 

     In this chapter other tools that can be used to examine robustness properties of 

controllers are discussed. Some of them are also evaluated on our previously developed 

complex, control oriented, physics based helicopter models and on the control systems 

designed for these helicopter models.      

5.1 Gain and Phase Margins 

     The concept of stability margins, specifically gain and phase margins, refers to 

stability robustness in feedback control systems. In general, robustness refers to a 

system’s ability to tolerate small changes (e.g. in the system parameters) without 

undergoing a qualitative change in behavior (e.g. from stability to instability). To 

quantify this property gain margin and phase margin are widely used for robustness 

studies. 

     Gain Margin (GM) is one of the most frequently used criteria for measuring relative 

stability of control systems. In the frequency domain, gain margin is used to indicate the 

closeness of the intersection of the negative real axis made by the Nyquist plot of the 

closed loop transfer function, ( )L j  to the (-1, j0) point (see Fig. 5.1). The gain margin 

shows how much the system gain may be increased without loosing stability. A formula 

that can be used to compute the gain margin is [61] 

10 10
1gain margin 20 log 20 log ( )( ) p

p
GM L j dBL j                                           (5.1) 

     Phase Margin (PM) is defined as the angle (in degrees) through which the ( )L j  

plot must be rotated about the origin so that the gain crossover passes through the (-1, j0). 
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The phase margin shows how large a delay may be inserted in control loop without 

loosing stability. A formula that can be used to compute the phase margin is [61] 

0
g=phase margin L(j ) 180                                                                                        (5.2)      

                                                                    

 

 

Figure 5.1: Phase Margin Defined in The L(jw)-Plane ([61][pp. 454]) 
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Figure 5.2: Stability Margins Example 

     In the example in Fig. 5.2 the red and blue lines correspond to systems that have the 

same phase and gain margins, but the “blue system” is obviously more robust (i.e. far 

from -1). 

     Phase and gain margins have the big advantage that they are easy to understand (see 

Figs. 5.1 and 5.2). Unfortunately they are strictly defined only for SISO (Single-Input 

Single-Output) systems. For MIMO (Multi-Input Multi-Output) systems new robustness 

measures have to be defined. Recent research along these lines led to the introduction of 

the Generalized Stability Margin (GSM), gap metric, and v-gap metric. 

5.2 Generalized Stability Margin, Gap Metric and v-Gap Metric 

     As noted before, robustness for SISO systems is easily examined using Phase and 

Gain Margins. Unfortunately, these tools are not useful for MIMO systems such as the 
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helicopter models developed in this dissertation. Therefore, novel tools, adequate for  

MIMO systems, are examined in this sub section. 

5.2.1 Generalized Stability Margin 

     For a given closed loop system [P,C] where P is a MIMO plant model and C is the 

control system, the definition of generalized stability margin is [68,69] 

   
1

1

, :
[ , ]

0
P C

P
I CP C I if P C is stable

b I

otherwise






 


      



                                               (5.3) 

5.2.2 Gap Metric 

     To define the gap metric the graph of an operator must be defined. Specifically, the 

graph of the operator P is the subspace of 2 2xH H  consisting of all pairs (u, y) such that 

=y Pu . This is given by  

2 :graph( ) P
M

P H G
N

 
 
 
 

                                                                                                (5.4) 

and  it is a closed subspace of 2H .  

The gap between two closed subspaces 1P  and 2P  is defined by [70,71] 

1 2
1 2

1 2

,1 2( )g K K
M M
N N

P P    
   
   

                                                                                     (5.5) 

Here K  denotes the orthogonal projection onto K, and 1
1

1 1P N M   and 2
1

2 2P N M   are 

normalized right coprime factorizations. 
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5.2.3 v-Gap Metric 

     One issue with the gap metric is that it is very conservative. To alleviate this 

disadvantage the v-Gap metric has been invented. For given 0 1, pxqP P R the definition 

for the v-gap metric is [68,69] 

* *
1 1

 
1 0 0 0

0 1,
det( )(jw) 0 (- , ) and det( ) 0

( ) :
1

v

G G if G G wno G G
P P

otherwise


 

       



       (5.6) 

where wno g is the winding number about the origin of g(s) and s follows the standard 

Nyquist D-Contour. 

     An important result is that if 1 2,( )v P P  is small then any satisfactory controller for 1P  

(in the sense of 
1
,P Cb  being large) will also be satisfactory for 2P . This result is also valid 

for the gap metric. Finally, it should be noted that the quantities ,P Cb , ,1 2( )g P P , and 

0 1,( )v P P  are always between in [0,1]. 

5.3 Applications 

     In the following we present some GSM and gap computations for our helicopter 

models. Consider the flexible blade helicopter model linearized around 40ktsAV   

straight level flight condition. Consider also the flexible blade helicopter model linearized 

around 80ktsAV   straight level flight condition. If we compute the gap and v-gap metric 

between these models we find 0.8484 and 0.8483. Moreover, the gap and v-gap metric 

between two flexible blade helicopter models, both linearized around  40ktsAV   straight 

level flight condition with one model experiencing 10% reduction in all helicopter inertial 
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parameters, are 0.08575 and 0.08568. However, the GSM is very small, i.e. 8.9297. 410 , 

which would indicate that robustness properties are poor. Definitely this is not the case, 

as indicated in the previous chapter via extensive simulations. The discrepancy between 

the small GSM value and the good robustness properties of previously tested controllers 

can be explained by the facts that a) GSM is very conservative by nature and b) GSM 

computation assumes that all elements in the plant matrices are perturbed. This is not the 

case in our helicopter models, because for example pA  matrix (see Eq. 4.1) has a clear 

structure (e.g. there are elements which are always zero).  
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CHAPTER 6: 

Constrained Model Predictive Control 

     In this chapter, MPC controllers, which account for output and input constraints 

simultaneously, are designed. MPC theory is increasingly attractive because of its 

effective use of models for prediction, potential for online adaptation, and constraints 

satisfaction. A brief description of MPC is given next (see [72-74]). 

     In constrained MPC, a cost function ( )V k :  

12 2
( )( ) 0

ˆ ˆ( ) ( | ) ( | ) u ( | )
p u

w

H H

R ipQ ii H i
V k y k i k r k i k k i k



 
                                         (6.1) 

is minimized subject to the discretized dynamic equations and some constraints:                         

U( ) U( ) ( )
0; 0; 0

k k Y k
E F G

     
       

     1 1 1
                                                               (6.2) 

where                                                                

u u u u

u u1 1 1 1

u u

ˆ ˆ ˆ ˆu ( | ) . u ( 1 | ) u ( | ) . u ( 1 | )
U( ) . . . , U( ) . . .

ˆ ˆ ˆ ˆu ( | ) . u ( 1 | ) u ( | ) . u ( 1 | )n n n n

k k k H k k k k H k
k k

k k k H k k k k H k

        
        
           

 

1 1ˆ ˆ( | ) . ( | )
( ) . . .

ˆ ˆ( | ) . ( | )
y y

w p

n w n p

y k H k y k H k
Y k

y k H k y k H k

  
 

  
   

,                                                               (6.3)    

E, F, and G are suitable matrices, yn  and un
 
are the number of outputs and inputs, pH  

and uH  are prediction and control horizons, and ( | )r k i k  is the reference trajectory to 

be tracked (Fig. 6.1). Usually u pH H  to decrease computational work. Sometimes 



 93 

penalizing tracking errors does not start immediately (i.e. 1wH  ) because of the delay 

between applying an input and seeing any effect. The optimization problem in Eqs. 6.1-

6.3 is equivalent to a quadratic programming problem [72] [pp. 81-83]. After solving it, 

only the first control in the resulting optimal control policy is applied and the 

optimization control problem is repeated for the next time horizon.  

 

 

 

Figure 6.1: MPC Representation 

     The ability of MPC to track discontinuous trajectories while obeying heterogeneous 

constraints for maneuvering flight and in the event of sensor failure is investigated. For 

this purpose MPC design was analyzed using linearized helicopter models, which were 

discretized using a nondimensionalized sampling time of 1rad that corresponds to 0.037s. 

This is much lower (around 50 times) than the period of any flight dynamics mode (see 

[75] for a discussion on sampling time selection). 
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     For the results presented next, the helicopter model, which is linearized around a 

helical turn ( 40AV  kts, 0.1A  rad/s, 0.1FP  rad, 204.73turnR  m), is used. Plant 

and sensor uncorrelated white Gaussian noises with intensities of 

7 710 , 10
snW I V I  41  ( sn  is the number of non-failed sensors) respectively were 

introduced in the linearized model.  

     In the first example, the helicopter must track a reference trajectory ( ( | )r k i k  in Eq. 

6.1) for which the roll angle has a prescribed time variation and the other two Euler 

angles are forced to be zero. The parameters used for MPC design were (all angles are 

given in radians): 

Output and input constraints:                 

     1 0.02 0.02 1 0.02 0.02TT T
A A A            

   1 1 1 ( / s)T Tp q r rad              

     00 0.18 0.18 0 0.35 0.18 0.18 1TT T
c s T        

 0 0.175 0.09 0.09 0.5
T T

c s T           

Other MPC parameters: 

20pH   and u 1H   

     For the second and third examples, measurements of two Euler angles ( ,A A  ) and 

linear velocities (u,v,w), respectively are not available due to sensor failure. The 

trajectories and parameters used for MPC design are the same as in the first example.       

     In the fourth example, for the evaluation of the robustness of the MPC designs it was 

considered that all helicopter inertial parameters (helicopter mass and helicopter inertia 
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matrix elements) are uncertain. There is no sensor failure for this example. We 

considered that the plant model’s inertial parameters decrease by 10% , while the internal 

model, which is used to produce MPC signals, is not aware of these uncertainties. We 

then simulated the response of the plant affected by these uncertainties. The trajectories 

and sensors used for MPC design are the same as in the first example. Some MPC 

parameters are changed: 10pH  , and 410W I 41 .  

     The length of simulation interval for all the MPC examples is 200rad (or 7.4s). There 

is a discontinuity in the desired trajectory at instant 100  rad (or 3.7t  s). Calculation 

time of all the MPCs is around 0.2 rad (0.0074s) which is 20% of the sampling time. Note 

that for the MPC simulations, black, blue and green colors are referring to the first, 

second, and third components of Euler angles, linear velocities, and angular velocities, 

respectively. 
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Figure 6.2: 1st MPC Example (No Sensor Failure) 
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Figure 6.3: 2nd MPC Example (1st  Sensor Failure) 
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Figure 6.4: 3rd MPC Example (2nd Sensor Failure)  
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Figure 6.5: 4th MPC Example (Robustness, No Sensor Failure) 
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     The first observation is that in all nominal designs MPC satisfied the constraints (see 

Figs. 6.2-6.5, plots of 0, , , , , ,c s TΑ Α Αp q r          ). When modeling uncertainties (i.e. 

variation of helicopter inertial properties) were also considered, nominal MPC satisfied 

the constraints. 

     The second important observation is that when sensor failure occurs, the overshoot of 

helicopter roll angle is bigger than when there is no sensor failure. For example, the 

overshoot of helicopter roll angle in Fig. 6.2 is obviously less than the roll angle 

overshoots in Figs. 6.3 and 6.4. The biggest helicopter roll angle overshoot with sensor 

failure is seen when linear velocities (u,v,w) measurements fail (see Fig. 6.4), whereas 

this overshoot is smaller when some Euler angle measurements (i.e. Α Α  ) fail (see Fig. 

6.3). The examples suggest that, for the problem analyzed in this section, loosing velocity 

measurements (i.e. u, v, w or p, q, r) is more dangerous than loosing some Euler angle 

measurements (i.e. Α Α  ). When angular velocity measurements (i.e. p, q, r) fail, the 

MPC example defined in this section is not feasible. 

     Another important observation is that when modeling uncertainties (i.e. variation in all 

helicopter inertial properties) are considered, MPC becomes less successful in tracking 

strong discontinuities. The internal models which produce control signals are still 

satisfying the constraints. However, some plant outputs (i.e. Α Α  ) violate the 

constraints when this model experiences uncertainties (see Fig. 6.5). This example shows 

that MPC has robustness limitations: when modeling uncertainties (i.e. variation in 

helicopter inertial quantities) exist and also hard constraints on outputs and inputs are 

imposed, MPC is not very successful in tracking discontinuous trajectories. 
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     A final observation is that the other states which are not included in the reference 

trajectory tracked by MPC (u, v, w, p, q, r) do not experience catastrophic behavior (e.g. 

large and fast variations) as shown in Figs. 6.2-6.5. 

     We also remark that extensive numerical experiments with level banked turns and 

different helical turns indicate that all the observations discussed in this section are still 

valid (see Appendix F).  

    The previous MPC examples are also examined with the helicopter model which is 

linearized around a hover turn ( 1AV  kt, 0.1A  rad/s, 0.1FP  rad, 5.12turnR  m). All 

the MPC design parameters and trajectories are chosen the same with the previous set of 

examples. The previous discussion is also valid for hover turn (see Appendix F for more 

examples).  

 

 

 

 

 

 

 

 

 



 102 

0 1 2 3 4 5 6 7

-0.1
0

0.1
0.2

Time (s)

 A
, 

A
, 

A
 (

ra
d)

 
 

 

A 

A,A 

A=-0.1

A=0.1

 

0 1 2 3 4 5 6 7
-20

0

20

Time (s)

u,
v,

w
 (m

/s
)

u 

w 
v 

 

0 1 2 3 4 5 6 7
-1

0

1

Time (s)

p,
q,

r 
(r

ad
/s

)

p

q,r

 

0 2 4 6
0

0.1

0.2

Time (s)

 0
(r

ad
)

            
0 2 4 6

-0.1

0

0.1

Time (s)

 c
 (

ra
d)

 

 

0 2 4 6
-0.2

0

0.2

Time (s)

 s
 (

ra
d)

 

            
0 2 4 6

-0.05
0

0.05
0.1

Time (s)

 T
 (

ra
d)

 

 

 

Figure 6.6: 1st MPC Example for Hover Turn (No Sensor Failure) 
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Figure 6.7: 2nd MPC Example for Hover Turn (1st  Sensor Failure) 
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Figure 6.8: 3rd MPC Example for Hover Turn (2nd Sensor Failure) 

 



 105 

0 1 2 3 4 5 6 7

-0.1

0

0.1

Time (s)

 A
, 

A
, 

A
 (

ra
d)

 
 

 

A

A,A 

A=-0.1

A=0.1

 

0 1 2 3 4 5 6 7
-20

0

20

Time (s)

u,
v,

w
 (m

/s
)

u 
v 
w 

 

0 1 2 3 4 5 6 7
-1

0

1

Time (s)

p,
q,

r 
(r

ad
/s

)

p 

q,r

 

0 2 4 6
0

0.05

Time (s)

 0
(r

ad
)

         
0 2 4 6

-0.2

0

0.2

Time (s)

 c
 (

ra
d)

 

 

0 2 4 6
-0.2

0

0.2

Time (s)

 s
 (

ra
d)

 

         
0 2 4 6

0

0.1

0.2

Time (s)

 T
 (

ra
d)

 

 

 

Figure 6.9: 4th MPC Example for Hover Turn (Robustness, No Sensor Failure) 
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CHAPTER 7: 

Simultaneous Model and Control System Design 

     In this chapter, simultaneous helicopter plant and control system design are examined. 

The derivative of J (cost of OVC) with respect to x (set of optimization parameters) 

cannot be computed analytically. This recommends the application of certain stochastic 

optimization techniques. Specifically, in this article SPSA [43], which has proven 

effective in solving other complex problems [44], including optimization of non-

differentiable functions [76], has been selected to solve the problem: 

, , ,
u u

c

T
A F G x

min J E R                                                                                                       (7.1) 

subject to Eqs. 4.8, 4.9 and 4.11 where  = , , , ,twx c Κ m R    is the set of plant 

optimization parameters. The elements of x are constrained, i.e. 
min maxi i ix x x  (see 

Table 7.1). 

Table 7.1: Design Variables and Constraints 

Design 
Variable Nominal Value 

Lower 
Bound 

/i ix x  

Upper 
Bound 

/i ix x  

c 0.5401 m -0.05 0.05 

  48149 Nm/rad -0.05 0.05 
m 9.1 kg/m -0.05 0.05 
R 7.5 m -0.05 0.05 

tw  -0.14 rad -0.05 0.05 
  27 rad/s -0.05 0.05 

     SPSA has many advantages. For example, SPSA uses only two evaluations of the 

objective for the evaluation of the gradient [43]. Also, numerical experiments indicated 

tugrul
Highlight

tugrul
Highlight
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that SPSA is more efficient in finding the global minimum compared to other 

computationally expensive algorithms like genetic algorithms and fast simulated 

annealing [77]. Moreover, the SPSA was also successful in solving constrained 

optimization problems [78]. Finally, under certain conditions (see [43]) strong 

convergence of the SPSA has been theoretically proved. 

7.1 Formulation 

     Let x denote the vector of optimization variables. In classical SPSA, if 
[ ]k

x  is the 

estimate of x at k-th iteration, then 

[ 1] [ ] [ ]k k k kx x a g                                                                                                            (7.2)                                                                                

where ka  is a decreasing sequence of positive numbers and [ ]kg  is the estimate of the 

objective’s gradient at [ ]kx , computed using a simultaneous perturbation as follows. Let  

[ ]
p

k R  be a vector of p mutually independent mean-zero random variables 

[ ]1 [ ]2 [ ].......k k k p
 
 
 
    satisfying certain conditions (see [76, 79]). Then [ ]kg  is  

[ ] [ ]1 [ ]
......

T

k k k k k p
g d d

      
 
 
  

 
   

                                                                                        (7.3)                                                                          

where    and    are estimates of the objective evaluated at [ ] [ ]k k kx d   and 

[ ] [ ]k k kx d  , respectively.  

     In this study a novel adaptive SPSA (see Appendix H) that accounts for the constraints 

that the optimization variables must be between lower and upper limits is developed to 
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solve related problems. All the perturbed vector elements, [ ] [ ]k k kx d   and [ ] [ ]k k kx d  , 

are also required to be between the prescribed lower and upper limits. Using these 

requirements and the guidelines provided in [43] for the selection of sequences ka , kd , 

we chose kd  as 

    min min min min/ ,0.95 ,l ui ik i
d k  

  
 
  

 d                                                                     (7.4)                                                                                

Here l  and u  are vectors whose components are [ ][ ]( ) / k ik i mini
x x   for each positive  

[ ]k i  and [ ][ ]( ) /max k ik i i
x x   for each negative [ ]k i , respectively. Likewise, we selected 

ka  as 

 min min min min/( ) ,0.95 ( ), ( )i il uk i
a S k   

  
 
  

 a                                                              (7.5)                                                                               

where l  and u   are vectors whose components are [ ] [ ]( ) /k i min k ii
x x g  for each 

positive [ ]k ig  and [ ] [ ]( ) /maxk i k ii
x x g  for each negative [ ]k ig , respectively. The other 

SPSA parameters d, a,  ,  , S are chosen using guidelines provided in [43, 80-82]. The 

resulting algorithm is described next. 

7.2 Algorithm 

Step 1: Set k=1 and choose initial values for the optimization parameters, [ ]kx x , and 

choose a specific flight condition. 

Step 2: Compute pA  and pB , use them to design OVC, to obtain the current value of the 

objective, k  (note that k kJ   for OVC and rigid blade helicopter model is used for 
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both plant and control system design). 

Step 3: Compute [ ]kg  using (7.3) with kd  given by (7.4). 

Step 4: If [ ]k ka g x , where ka  is given by (7.5) and x  is the minimum allowed 

variation of x, or k+1 is greater than the maximum number of iterations allowed, exit, else 

calculate the next estimate of x, [ 1]kx  , using (7.2), set k=k+1 and return to Step 2. 

7.3 Results 

     The helicopter model was linearized for AV 40 kts (20.5782m/s), FP  0 rad,   0 

rad/s (straight level flight) and used to perform simultaneous helicopter plant and control 

system design. We used nominal values of helicopter parameters as initial conditions. 

The OVCs were designed for this flight condition with  2 410 1 1 0.1   (variance 

constraints on helicopter Euler angles). 

     Using SPSA parameters: 10S  , 0.602  , 100a , 20d ,    , and the 

algorithm in section 7.2, 33.5% of the control effort, J, is saved. Table 7.1 summarizes 

the optimization parameters and their lower and upper bounds while Table 7.2 gives their 

optimum values. It can be seen from Fig. 7.1 that the convergence of SPSA is very fast. 

     To evaluate the performance of the redesigned helicopter, the new model was 

linearized around different straight level flight conditions (i.e. between AV 1 kt (0.5145 

m/s) to 80 kts (41.1565 m/s)). Then at each flight condition the corresponding OVC was 

designed and its cost, rJ , was computed. At the same flight conditions the initial 

helicopter (before redesign) was also linearized, the corresponding OVCs were designed, 

and nominal cost, nJ , was computed. Then the relative variation of the cost,  
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100( ) /n r n%J J J J  , was computed for each flight condition. Fig. 7.2 shows variation 

of %J  with respect to (w.r.t.) AV . It is clear from Fig. 7.2 that using the redesigned 

helicopter considerable control energy is saved for each flight condition.          

     This scenario was repeated for helical turns ( AV 1 kt to 80 kts, FP  0.1 rad, 

  0.1 rad/s) and led to a similar conclusion: substantial cost savings are obtained 

using the redesigned helicopter (i.e. the one obtained using the 1st design point).        

     To further convince ourselves of the advantages of simultaneous helicopter plant and 

control system design, two other flight conditions were used to redesign the helicopter: 

AV 1 kt and AV 80 kts (straight level flights). The same SPSA parameters were used 

and two different redesigned helicopters were obtained. The same analysis was 

performed as before, leading to very similar conclusions: SPSA converges very fast, 

optimal design variables are very close, but not identical to the ones in Table 7.2 (see 

Tables 7.3 and 7.4), and the behaviors of %J  w.r.t. AV  is similar to the previous one (see 

Fig. 7.2). 

Table 7.2: Optimum Design Variables (1st Design Point) 

Design 
Variable Optimum Value 

Change 
/i ix x  

c 0.5671 m 0.04999 

  50327.2608 Nm/rad 0.04524 
m 8.6883 kg/m  -0.04524 
R 7.1269 m -0.04975 

tw  -0.1337 rad -0.04524 
  25.6503 rad/s  -0.04999 
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Table 7.3: Optimum Design Variables (2nd Design Point, 1kt) 

Design 
Variable Optimum Value 

Change 
/i ix x  

c 0.5670 m 0.04975 

  45982.2950 Nm/rad -0.04500 
m 8.6905 kg/m -0.04500 
R 25.6503 m -0.04999 

tw  -0.1330 rad -0.04975 
  25.6503 rad/s -0.04999 

 

Table 7.4: Optimum Design Variables (3rd Design Point, 80 kts) 

Design 
Variable Optimum Value 

Change 
/i ix x  

c 0.5661 m 0.04817 

  50264.6671 Nm/rad 0.04394 
m 8.6973 kg/m -0.04425 
R 7.1676 m -0.04432 

tw  -0.1339 rad -0.04357 
  25.6503 rad/s -0.04999 
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Figure 7.1: Cost Optimization Using SPSA 
 

 



 113 

0 10 20 30 40 50 60 70 80
20

25

30

35

40

VA (kts)

%
J

 

 
First
Second
Third

 

 

Figure 7.2: Relative Energy Save w.r.t. AV   for All Design Points 

     To better analyze simultaneous design idea, the following study was performed. The 

1st OVC was designed for the initial (nominal) model linearized around AV 40 kts 

FP  0 rad,   0 rad/s and the 2nd OVC was designed for the redesigned model (i.e. 

the one obtained using the 1st design point) linearized around AV 40 kts FP  0 rad, 

  0 rad/s. Then the 1st OVC was evaluated for the nominal model linearized around 

AV 40 kts, FP  0 rad,   0 rad/s and the 1st closed loop system was found. 

Moreover, the 2nd OVC was evaluated for the redesigned model linearized around 

AV 40 kts, FP  0 rad,   0 rad/s and the 2nd closed loop system was found.  

     In Figs. 7.3 and 7.4 responses of helicopter Euler angles and all controls are given 

before and after simultaneous helicopter plant and control system design, respectively. It 

is clear from Fig. 7.3 that behaviors of helicopter Euler angles are very similar before and 

after redesign. The variances of outputs of interest (i.e. helicopter Euler angles) are very 

close and satisfy the constraint Eq. 4.11 before and after redesign. It can be seen from 

Fig. 7.4 that input variations from trim values slightly decrease after redesign, which 
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explains the considerable reduction of control effort. The other outputs (i.e. linear 

velocities, angular velocities, blade flapping and lagging angles) do not experience 

catastrophic behavior (see Appendix H, Figs. H.1 to H.8). This good behavior is 

explained by the exponentially stabilizing effect of OVC. Similar study was performed 

for a helical turn (i.e. FP  0.1 rad,   0.1 rad/s) and the results are summarized in 

Figs. 7.5 and 7.6. For this purpose the redesigned model obtained using the 1st design 

point was used. 
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Figure 7.3: Helicopter Euler Angles Before and After Redesign 
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Figure 7.4: All Helicopter Controls Before and After Redesign 
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Figure 7.5: Helicopter Euler Angles Before and After Redesign for Helical Turn 
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Figure 7.6: All Helicopter Controls Before and After Redesign for Helical Turn 
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     Closed loop stability robustness of OVC with respect to modeling uncertainties was 

also investigated by using the redesigned helicopter and the results are given in Appendix 

H (see Figs. H.9 to H.11). 
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CHAPTER 8: 

Conclusions and Future Work 

8.1 Conclusions 

     Control oriented helicopter models are derived using physics principles. The new 

ordering scheme is very effective at reducing the number of terms in these models while 

preserving key characteristics of the initial models. Validation of the models used for 

control against data from the literature indicates that the control oriented modeling 

process correctly captures essential helicopter dynamics, including flight dynamics, 

flapping, and lead-lagging modes and trims.  

     The models are further used for control design, first for variance constrained 

controllers with inequality constraints on outputs or inputs. Key advantages of such 

controllers are their easy implementation and fast convergence of control design 

algorithms, even for the most complex model (i.e. flexible blade model). All variance 

constrained controllers exponentially stabilize the nominal flight condition while 

satisfying the constraints. Closed loop stability robustness analysis revealed that all these 

controllers are robust when variations in helicopter straight level velocity are considered. 

They are also robustly stable with respect to modeling uncertainties. Second, the models 

are also used for constrained model predictive control (MPC) design. The studies show 

that tracking of discontinuous trajectories using MPC is feasible. MPC is also robust to 

modeling uncertainties. Even though the MPC solution is computationally expensive 

compared to variance constrained control, calculation times for our MPCs are relatively 

small.  
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     Control oriented, physics based, complex helicopter models are also used for control 

design for helical and level banked turns. Models linearized around these flight 

conditions are used for the design of constrained controllers: output variance constrained 

control (OVC), input variance constrained control (IVC), and constrained model 

predictive control (MPC). OVC and IVC studies show that all variance constrained 

controllers exponentially stabilize the nominal maneuvering flight condition while 

satisfying the constraints. Closed loop stability robustness analysis revealed that all these 

controllers are robust when uncertainty in helicopter velocity is considered. They are also 

robustly stable with respect to uncertainty in helicopter inertial parameters. An important 

observation is that there is no correlation between the length of stability interval, L, and 

the magnitudes of output or input constraints. Furthermore, adaptive switching in 

response to sensor failure was investigated. The studies show that the switching idea is 

feasible for OVC and IVC. 

     For the MPC scenario, similar studies were carried out. MPC can handle 

simultaneously numerous constraints, including discontinuities. The studies show that 

tracking of discontinuous maneuvering trajectories using MPC is feasible. Even though 

MPC solution is computationally expensive compared to variance constrained control, 

calculation times for the MPCs are relatively small. Limitations of MPC robustness were 

also revealed: when  discontinuities must be tracked and hard output and input constraints 

obeyed, MPC becomes less successful in trajectory tracking when there are uncertainties 

in helicopter inertial parameters. The adaptive switching idea in response to sensor failure 

was also investigated for MPC and the results show that it is feasible for MPC.   
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     Finally, simultaneous helicopter plant and control system design is investigated using 

a stochastic optimization method to save active control effort. Complex, control oriented, 

physics based helicopter models (i.e. rigid blade model) are used for this purpose. An 

effective algorithm which performs simultaneous design is developed and illustrated on 

straight level flights and helical turns. 

     Simultaneous perturbation stochastic approximation (SPSA) always works well for 

our problems (i.e. converges very fast). Considerable reduction of control effort is 

obtained via simultaneous design with very small (5%) changes in some helicopter 

parameters. Furthermore, the behaviors of fuselage and blade states before and after 

redesign are very similar. These states do not display bad behavior (i.e. very large 

amplitudes and fast oscillations). The variances of the outputs of interest (i.e. helicopter 

Euler angles) are very close and satisfy the constraints before and after redesign. The 

inputs also display smaller variations from trim values after redesign. This explains the 

considerable reduction of control effort observed after simultaneous design.  

    Furthermore, variance constrained controllers which are designed for the redesigned 

helicopters have strong robustness with respect to the variations in flight conditions and 

all helicopter inertial properties. 

8.2 Future Work 

     Trailing edge flaps can be added to previously developed complex control oriented 

physics based models to save more active control energy. For this purpose simultaneous 

helicopter trailing edge flaps and a specific variance constrained controllers can be 

studied. These trailing edge flaps can also be used for noise and vibration reduction, and 

control redundancy in case of failures and emergency. 
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     Moving horizontal tailplane idea can be used on previously developed complex 

control oriented physics based models to save more control effort. This idea also reduces 

the control inputs of trailing edge flaps. 

     Simplified nonlinear helicopter model (e.g. rigid body model and flapping blades) can 

be used to better check robustness properties of used controllers. 

     Comparison between the semi exact model (i.e. the model obtained by using small 

angle assumption for blade angles) and simplified model can be examined using 

nonlinear and linear models to better characterize robustness of controllers.   

     Finally  -synthesis can be used to obtain less conservative theoretical results of the 

helicopter models than when GSM was used. 
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APPENDIX A 

A.1 Energy Approach for Blade Flexibility 

     To determine orders of lumped system parameters, the force acting on the blade is 

distributed linearly along the blade span. 

 

 

 

Figure A.1: Force Distribution over Blade Span 

     Using Euler-Bernoulli beam theory, the flapwise bending displacement function is 
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Figure A.2: Flapwise Bending Displacement Along Blade Span 
(Euler-Bernoulli Beam Theory Result) 

where 0F  is the force acting on blade tip, bI  is the blade inertia, and E is the blade’s 

modulus of elasticity. 

     The weighted (i.e. average) bending displacements for 2ND and 3RD blade segments are 

(there are three blade segments and the root segment is assumed rigid) 

2
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4 4
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(1 )1907
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E B

F e Rw
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 ,      
3

0
4 4

&
(1 )4337
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E B

F e Rw
EI


                               (A.2) 

     The orders of any flapwise bending angle and  flapwise bending springs’ stiffness are 
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A.2  Helicopter Data 

Table A.1: Configuration Data of Puma SA 330 

Quantity  Symbol Magnitude Reference 

Moments of inertia 

xxI  

yyI  

zzI  

xzI  

9638 2kg m  

33240 2kg m  

25889 2kg m  

2226 2kg m  

 

[47] 

 

 

Number of blades bN  4 [47] 

Rotor radius R 7.5 m [47] 

Hinge offset e 0.285 m [47] 

Main rotor angular velocity   27 rad/s [47] 

Helicopter mass aM  5805 kg [47] 

Flapping spring stiffness coefficient K  48149 N m/rad [47] 

Lagging spring stiffness coefficient K  100000 N m /rad [47]   

Lagging damper damping coefficient C  10000 N m s/rad [47]   

Flapwise bending spring stiffness 

coefficient 
K  200000 N m/rad   

Flapwise bending damper damping 

coefficient 
C  20000 N m s/rad   

Blade inertia bI  1280 2kg m  [47] 

Blade twist tw  -0.14 rad [47] 
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Blade profile drag 0  0.01 [50] 

Blade induced drag 2  0.4 [50] 

Blade lift coefficient a 5.73 /rad [47]  

Vertical distance helicopter’s center 

of gravity (cg) to hub 
h 2.157 m [47]   

Vertical distance cg to tail rotor zT  1.585 m [47] 

Horizontal distance cg to tail rotor xT  9 m [47] 

Tail rotor thrust coefficient TK  8000 N /rad   

Vertical distance cg to nose zF  0.55 m [47]   

Horizontal distance cg to nose xF  3.80 m [47]   

Fuselage skin friction coefficient d f
c  0.02 [56]   

Fuselage pressure drag coefficient d p
c  1.2 [56]   

Fuselage length l 14 m [47]   

Fuselage diameter d 3 m [47]   

Lock number   9.374 [47] 

Vertical distance cg to landing gear 

(lg)  
z lg  1.91 m [47]   

Horizontal distance cg to lg x lg  0.1 m [47]   

Landing gear drag coefficient dlg
c  0.35 [54]   

Landing gear frontal area lgS  0.51 2m  [54]   
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Tail rotor hub and shaft (h&s) drag 

coefficient 
&dh s

c  1.03 [54]   

Tail rotor  h&s frontal area &h sS  0.054 2m  [54]   

Horizontal stabilizer (hs) lift 

coefficient 
hs0

lc  0.0262 [47]   

Drag coefficient of hs 
hs

dc  0.01 [54]   

Linear decrease ratio of hs chord  hsk  0.118  [47]   

Root chord length of hs 
0

hsc  0.76 m [47]   

 : Estimated Quantity 
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APPENDIX B 

Model Modes 
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Figure B.1: Flight Dynamics Modes for Helical Turn 

( 0.1A  rad/s, 0.1FP  rad) 
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Figure B.2: Flapping Modes for Helical Turn 

( 0.1A  rad/s, 0.1FP  rad) 
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Figure B.3: Lead-Lagging Modes for Helical Turn 
( 0.1A  rad/s, 0.1FP  rad) 
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APPENDIX C 

C.1 OVC Algorithm 

For the given data 0,( , , , , , , , , 0, , 0)p p p p p iA B C D M W V R Q n     

1. Compute X and F using 

10 T T T
p p p p p p pXA A X XM V M X D W D       and 1T

pF XM V   

2. Compute jK  and jG  using 

10 ( )T T T
j p p j j p p j p pK A A K K B R B K C Q j C      and  1 j

T
p jG R B K  

3. Compute 
j

cX  using 

0 ( ) ( )
j j

T T
c p p j p p j cX A B G A B G X FVF      and if  2

1
( )c

j

y
T

i p p

n

i
C X X C   


  stop 

4. Update ( )Q j  with  

2

[ ( ) ]
( 1) ( )j

nT
c

i

C X X C
q j q j





 
 
 
 

 and go to step 2. 
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C.2 IVC Algorithm 

For the given data 0,( , , , , , , , , 0, , 0)p p p p p iA B C D M W V R Q n     

1. Compute X and F using 

10 T T T
p p p p p p pXA A X XM V M X D W D       and 1T

pF XM V   

2. Compute jK  and jG  using 

10 ( )T T T
j p p j j p p j p pK A A K K B R j B K C QC     and  1( ) j

T
p jG R j B K  

3. Compute 
j

cX  using 

0 ( ) ( )
j j

T T
c p p j p p j cX A B G A B G X FVF      and if  2

1
( )c

j

u
T

i j j

n

i
G X X G   


  stop 

4. Update ( )R j  with  

2

[ ( ) ]
( 1) ( )

T
j j

n
c j

i

G X X G
r j r j



 
  
 
 

 and go to step 2. 
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APPENDIX D 

D.1 OVC and IVC Results for Straight Level Flight 

     For the numerical experiments reported here, the sensor measurements are helicopter 

linear velocities, angular velocities and Euler angles, and the noise intensities are 

7 7
910 , 10nW I V I     where n is the number of states. In general V depends on the 

sensor quality (the high quality sensors correspond to small V) whereas W is dictated by 

the modeling process. Three models were examined: the first model is described in 

section IV, the second model is found by reducing the magnitude of all helicopter inertial 

parameters (helicopter mass and helicopter inertia matrix elements) with 10% compared 

to first model, and the last model is found by eliminating the blade flexibility from the 

first model (n=41 for the first and second models and n=25 for the last model). Note that 

all these models are linearized around straight level flight condition. Data of output and 

input variance figures are obtained using fixed Q and R penalties and steps 2-3 in 

Appendix B for straight level flight. The data obtained using this approach is very close 

to data which is obtained using the approach for maneuvering flight. 
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Table D.1: OVC and IVC Scenarios for Straight Level Flight 

 

 

 

 

 

 

 

 

 

Table D.2: Stability Robustness Analysis of OVC for Straight Level Flight 

 Design Model 
Nominal 

Design AV  Evaluation Model Evaluation AV  

1st Rigid Blade Hover Rigid Blade Hover to 80 kts 

2nd Rigid Blade 40 kts Rigid Blade Hover to 80 kts 

3rd  Rigid Blade Hover Flexible Blade Hover to 80 kts 

4th  Rigid Blade 40 kts Flexible Blade Hover to 80 kts 

5th  Flexible Blade Hover Flexible Blade Hover to 80 kts 

6th  Flexible Blade 40 kts Flexible Blade Hover to 80 kts 

7th Flexible Blade Hover 
Flexible Blade with 

10% Helicopter Inertia 
Variation 

Hover to 80 kts 

8th Flexible Blade 40 kts 
Flexible Blade with 

10% Helicopter Inertia 
Variation 

Hover to 80 kts 

Hover 10 kts 20 kts 30 kts 40kts 50 kts 60 kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

5th  ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

6th  ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

7th ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

8th ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 
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Table D.3: Stability Robustness Analysis of IVC for Straight Level Flight 

Table D.4: More Stability Robustness Analysis of OVC for Straight Level Flight 
(  2 610 1 1 1  ) 

 
 

Hover 10 kts 20 kts 30 kts 40kts 50 kts 60 kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U U U U MS U MS U MS U MS U MS 3 

2nd ES U ES U ES U ES U ES MS ES MS U MS U MS U MS 6 

3rd  ES U ES U ES U ES U U MS U MS U MS U MS U MS 4 

4th  U U ES U ES U ES U ES MS U MS U MS U MS U MS 4 

5th  ES U ES U ES U ES U U MS U MS U MS U MS U MS 4 

6th  ES U ES U ES U ES U ES MS ES MS U MS U MS U MS 6 

7th ES U ES U ES U ES U U MS U MS U MS U MS U MS 4 

8th ES U ES U ES U ES U ES MS ES MS U MS U MS U MS 6 

Hover 10 kts 20 kts 30 kts 40kts 50 kts 60 kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U U U U U U MS U MS U MS U MS U MS 2 

2nd U U U U U U ES U ES MS U MS U MS U MS U MS 2 

3rd  U U U U U U U U U MS U MS U MS U MS U MS 0 

4th  U U U U U U U U U MS U MS U MS U MS U MS 0 

5th  ES U ES U ES U ES U ES MS U MS U MS U MS U MS 5 

6th  U U U U U U U U U MS ES MS ES MS ES MS ES MS 5 

7th ES U ES U ES U ES U ES MS U MS U MS U MS U MS 5 

8th U U U U U U U U ES MS ES MS ES MS ES MS ES MS 5 
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Table D.5: More Stability Robustness Analysis of OVC for Straight Level Flight#2  
(  2 310 1 1 1  ) 

 

 

 

 

 

 

Hover 10 kts 20 kts 30 kts 40kts 50 kts 60 kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U U MS U MS U MS U MS U MS 4 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

3rd  ES U ES U ES U ES U ES MS U MS U MS U MS U MS 5 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

5th  ES U ES U ES U ES U U MS U MS U MS U MS U MS 4 

6th  ES U ES U ES U ES U ES MS ES MS ES MS ES MS ES MS 9 

7th ES U ES U ES U ES U U MS U MS U MS U MS U MS 4 

8th ES U ES U ES U ES U ES MS ES MS ES MS ES MS U MS 8 
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Figure D.1: Output and Input Variances of the 1st OVC for Straight Level Flight  
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Figure D.2: Output and Input Variances of the 2nd OVC for Straight Level Flight 
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Figure D.3: Output and Input Variances of The 1st IVC for Straight Level Flight 
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Figure D.4: Output and Input Variances of The 2nd IVC for Straight Level Flight 
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D.2 Additional OVC and IVC Results for Maneuvering Flight 

     In this sub-section 1st to 4th set of controllers are designed with the same conditions as 

the ones in chapter 4 except A  and FP . The stability robustness analysis of OVC and 

IVC with all sensor failures are examined for different  maneuvers. 
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Figure D.5: Output and Input Variances of The 2nd OVC for Helical Turn   
( 0.1A  rad/s, 0.1FP  rad) 
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Figure D.6: Output and Input Variances of The 2nd IVC for Helical Turn  
( 0.1A  rad/s, 0.1FP  rad) 
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Figure D.7: Output and Input Variances of The 4th OVC for Helical Turn  
( 0.1A  rad/s, 0.1FP  rad) 
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Figure D.8: Output and Input Variances of The 4th IVC for Helical Turn 
( 0.1A  rad/s, 0.1FP  rad) 

 

Table D.6: Stability Robustness Analysis of OVC for Level Banked Turn  
( 0.1A  rad/s, 0FP  rad) 

 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 
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Table D.7: Stability Robustness Analysis of IVC for Level Banked Turn 
 ( 0.1A  rad/s, 0FP  rad) 

Table D.8: Stability Robustness Analysis of OVC for Different Helical Turn 
( 0.1A  rad/s, 0.05FP  rad) 

 

 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 
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Table D.9: Stability Robustness Analysis of IVC for Different Helical Turn  
( 0.1A  rad/s, 0.05FP  rad) 

Table D.10: More Stability Robustness Analysis of OVC for Helical Turn 
( 0.1A  rad/s, 0.1FP  rad,  2 610 1 1 1  ) 

 

 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

4th  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st U U U U U U U U ES MS ES MS ES MS ES U U U 4 

2nd U U U U U U U U U MS U MS ES MS ES U ES U 3 

3rd  U U U U U U U U ES MS ES MS ES MS ES U U U 4 

4th  U U U U U U U U U MS U MS ES MS ES U ES U 3 
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Table D.11: More Stability Robustness Analysis of OVC for Helical Turn#2 
( 0.1A  rad/s, 0.1FP  rad,  2 310 1 1 1  ) 

Table D.12: More Stability Robustness Analysis of IVC for Helical Turn 
( 0.1A  rad/s, 0.1FP  rad,  2 610 1 1 1 1  ) 

 

 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS U U U U 7 

2nd U U U U U U U U ES MS ES MS ES MS ES U ES U 5 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS U U U U 7 

4th  U U U U U U U U ES MS U MS U MS U U U U 5 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st U U U U U U ES U ES MS ES MS ES MS ES U ES U 6 

2nd U U U U U U ES U ES MS ES MS ES MS ES U ES U 6 

3rd  U U U U U U ES U ES MS ES MS ES MS ES U ES U 6 

4th  U U U U U U ES U ES MS ES MS ES MS ES U ES U 6 
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Table D.13: More Stability Robustness Analysis of IVC for Helical Turn#2 
( 0.1A  rad/s, 0.1FP  rad,  2 310 1 1 1 1  ) 

 

 

 

 

 

 

 

 

 

 

Hover 10 kts 20 kts 30 kts 40 kts 50 kts 60kts 70 kts 80 kts 
 

CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL CL OL L 

1st ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

2nd U U U U U U ES U ES MS ES MS ES MS ES U ES U 6 

3rd  ES U ES U ES U ES U ES MS ES MS ES MS ES U ES U 9 

4th  U U U U U U U U ES MS ES MS ES MS ES U ES U 5 
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APPENDIX E 

Additional OVC and IVC Simulations 

     In this section 1st OVC and 1st IVC designed with and without sensor failure in chapter 

4 are used and the closed loop responses are simulated. 
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Figure E.1: OVC, 1st Failure, Some Fuselage States 
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Figure E.2: OVC, 1st Failure, Blade Flapping States 
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Figure E.3: OVC, 1st Failure, Blade Lagging States 
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Figure E.4: IVC, 1st Failure, Some Fuselage States 
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Figure E.5: IVC, 1st Failure, Blade Flapping States 
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Figure E.6: IVC, 1st Failure, Blade Lagging States 
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Figure E.7: OVC, 2nd Failure, Fuselage States 
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Figure E.8: OVC, 2nd Failure, All Controls 
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Figure E.9: IVC, 2nd Failure, Fuselage States 
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Figure E.10: IVC, 2nd Failure, All Controls 
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Figure E.11: OVC, 3rd Failure, Fuselage States 
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Figure E.12: OVC, 3rd Failure, All Controls 
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Figure E.13: IVC, 3rd Failure, Fuselage States 
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Figure E.14: IVC, 3rd Failure, All Controls 

 

 

 

 

 

 

 

 

 

 

 



 166 

Table E.1: Closed Loop Stability Robustness of OVC for Level Banked Turn 
( 0.1A  rad/s, 0FP  rad) 

Table E.2: Closed Loop Stability Robustness of IVC for Level Banked Turn 
( 0.1A  rad/s, 0FP  rad) 

 

 

 

 

 

 

 

Failed Sensors 1st 2nd 3rd 4th 

1st ( , )A A   Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

2nd ( , , )u v w  Hover to 80 kts  Hover to 80 kts Hover to 80 kts Hover to 80 kts 

3rd ( , , )p q r  Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

Failed Sensors 1st 2nd 3rd 4th 

1st ( , )A A   Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

2nd ( , , )u v w  20 kts to 80 kts 30 kts to 80 kts 20 kts to 80 kts 30 kts to 80 kts 

3rd ( , , )p q r  Hover to 80 kts Hover to 80 kts Hover to 70 kts Hover to 80 kts 
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Table E.3: Closed Loop Stability Robustness of OVC for Different Helical Turn 
( 0.1A  rad/s, 0.05FP  rad) 

Table E.4: Closed Loop Stability Robustness of IVC for Different Helical Turn 
( 0.1A  rad/s, 0.05FP  rad) 

 

 

 

 

 

 

Failed Sensors 1st 2nd 3rd 4th 

1st ( , )A A   Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

2nd ( , , )u v w  Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

3rd ( , , )p q r  Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

Failed Sensors 1st 2nd 3rd 4th 

1st ( , )A A   Hover to 80 kts Hover to 80 kts Hover to 80 kts Hover to 80 kts 

2nd ( , , )u v w  20 kts to 80 kts 30 kts to 80 kts 20 kts to 80 kts 30 kts to 80 kts 

3rd ( , , )p q r  Hover to 80 kts Hover to 80 kts Hover to 70 kts Hover to 80 kts 
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Table E.5: Control Energy Comparison for Level Banked Turn 
( 0.1A  rad/s, 0FP  rad) 

 

 

 

 

 

 

Table E.6: Control Energy Comparison for Different Helical Turn 
( 0.1A  rad/s, 0.05FP  rad) 

 

 

 

 

 

 

 

 OVC Cost IVC Cost 

Failed Sensors 1st and 3rd 2nd  and 4th 1st and 3rd 2nd  and 4th 

1st ( , )A A   0.003404 0.004591 0.001968 0.000642 

2nd ( , , )u v w  0.001749 0.002301 0.002468 0.000530 

3rd ( , , )p q r  0.001978 0.001930 0.001581 0.000395 

      (no failure) 0.001216 0.001304 0.001444 0.000337 

 OVC Cost IVC Cost 

Failed Sensors 1st and 3rd 2nd  and 4th 1st and 3rd 2nd  and 4th 

1st ( , )A A   0.003504 0.004731 0.001950 0.000659 

2nd ( , , )u v w  0.001827 0.002455 0.002494 0.000558 

3rd ( , , )p q r  0.002098 0.002090 0.001579 0.000418 

      (no failure) 0.001287 0.001409 0.001442 0.000358 
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Table E.7: Number of Iteration for Helical Turn 
( 0.1A  rad/s, 0.1FP  rad) 

 

 

 

 

 

 

Table E.8: Number of Iteration for Level Banked Turn 
( 0.1A  rad/s, 0FP  rad) 

 

 

 

 

 

 

 

 OVC Cost IVC Cost 

Failed Sensors 1st and 3rd 2nd  and 4th 1st and 3rd 2nd  and 4th 

1st ( , )A A   18 18 12 26 

2nd ( , , )u v w  4 6 16 26 

3rd ( , , )p q r  6 6 14 24 

      (no failure) 4 6 14 22 

 OVC Cost IVC Cost 

Failed Sensors 1st and 3rd 2nd  and 4th 1st and 3rd 2nd  and 4th 

1st ( , )A A   18 18 12 26 

2nd ( , , )u v w  4 6 16 28 

3rd ( , , )p q r  6 6 14 24 

      (no failure) 4 6 14 24 
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Table E.9: Number of Iteration for Different Helical Turn 
( 0.1A  rad/s, 0.05FP  rad) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 OVC Cost IVC Cost 

Failed Sensors 1st and 3rd 2nd  and 4th 1st and 3rd 2nd  and 4th 

1st ( , )A A   18 18 12 26 

2nd ( , , )u v w  4 6 16 26 

3rd ( , , )p q r  6 6 14 24 

      (no failure) 4 6 14 22 
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APPENDIX F 

Additional MPC Results 

F.1 Straight Level Flight Examples 

     For straight level flight examples, plant and sensor uncorrelated white Gaussian noises 

with intensities of 7 7
910 , 10W I V I  41  respectively were introduced in the linearized 

model.  

     In the first example, the helicopter is required to track a reference trajectory for which 

the roll angle has a prescribed time variation and the other two Euler angles are forced to 

be zero. The parameters used for MPC design (all the angles are given in radians) were:  

▪Output and input constraints:  

     1 0.01 0.01 0 0.01 0.01TT T
A A A            

   1 1 1 ( / )T Tp q r rad s               

     00 0.18 0.18 0 0.35 0.18 0.18 1TT T
c s T        

 0 0.175 0.09 0.09 0.5
T T

c s T           

▪ Other MPC parameters: 

20pH  , u 2H  , and 1wH   

     The second example is the same with the first example except that the first sensor 

failure occurs. This MPC example is not feasible with the second and third sensor 

failures. 
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     In the third example, to evaluate the robustness of our MPC designs it is considered 

that all helicopter inertial parameters (helicopter mass and helicopter inertia matrix 

elements) are uncertain. For this purpose it is considered that the plant model’s inertial 

parameters decrease by 10% , while the internal model, which is used to produce MPC 

signals, is not aware of these uncertainties. Then the response of the plant affected by 

these uncertainties was simulated (Fig. F.3). The trajectories and parameters used for 

MPC design are the same as in the first example. It can be observed from Fig. F.3 that the 

plant outputs slightly violate the constraints due to these uncertainties.  

     For the fourth example, the helicopter is required to track a reference trajectory for 

which the pitch angle has a prescribed time variation and the other two Euler angles are 

forced to be zero. The parameters used for MPC design are the same with previous 

examples except that 

     0.01 1 0.01 0.01 0 0.01TT T
A A A         

     The fifth problem is the same with the fourth problem except that the first sensor 

failure occurs. This MPC example is not feasible with the second and third sensor 

failures. Note also that for all these straight level flight examples the sampling time was 

0.037 s (which is equal to 1 rad). 
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Figure F.1: 1st MPC Example for Hover (No Sensor Failure) 
( 1AV  kt, 0A  rad/s, 0FP  rad, 0turnR  m) 
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Figure F.2: 2nd MPC Example for Hover (1st Sensor Failure) 
( 1AV  kt, 0A  rad/s, 0FP  rad, 0turnR  m) 
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Figure F.3: 3rd MPC Example for Hover (Robustness, No Sensor Failure) 
( 1AV  kt, 0A  rad/s, 0FP  rad, 0turnR  m) 
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Figure F.4: 4th MPC Example for Hover (No Sensor Failure) 
( 1AV  kt, 0A  rad/s, 0FP  rad, 0turnR  m) 
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Figure F.5: 5th MPC Example for Hover (1st Sensor Failure) 
( 1AV  kt, 0A  rad/s, 0FP  rad, 0turnR  m) 
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F.2 Maneuvering Flight Examples 
 
     In this sub-section the MPC examples examined in Chapter 6 are resolved for level 

banked turn and different helical turn. The MPC parameters of 1st to 4th set of examples 

are the same with the ones shown in Chapter 6. The 4th example (robustness) is not 

feasible for level banked turn. The behaviors of outputs and controls are similar with the 

ones discussed in Chapter 6. 
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Figure F.6: 1st MPC Example for Level Banked Turn (No Sensor Failure) 

( 40AV  kts, 0.1A  rad/s, 0FP  rad, turnR  205.76m) 
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Figure F.7: 2nd MPC Example for Level Banked Turn (1st Sensor Failure) 

( 40AV  kts, 0.1A  rad/s, 0FP  rad, turnR  205.76m) 

 



 181 

0 1 2 3 4 5 6 7

-0.1

0

0.1

0.2

Time (s)

 A
, 

A
, 

A
 (

ra
d)

 
 

 

A 

A,A 

A=-0.1

A=0.1

 

0 1 2 3 4 5 6 7
-20

0

20

Time (s)

u,
v,

w
 (m

/s
)

u

w

v

 

0 1 2 3 4 5 6 7
-1

0

1

Time (s)

p,
q,

r 
(r

ad
/s

)

p

q,r

 

0 2 4 6
0

0.1

0.2

Time (s)

 0
(r

ad
) 

        
0 2 4 6

-0.2

0

0.2

Time (s)

 s
(r

ad
) 

 

0 2 4 6
-0.1

0
0.1

Time (s)

 c
(r

ad
) 

        
0 2 4 6

-0.05
0

0.05
0.1

Time (s)

 T
(r

ad
) 

 

 

Figure F.8: 3rd MPC Example for Level Banked Turn (2nd Sensor Failure) 
( 40AV  kts, 0.1A  rad/s, 0FP  rad, turnR  205.76m) 
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Figure F.9: 1st MPC Example for Different Helical Turn (No Sensor Failure) 

( 40AV  kts, 0.1A  rad/s, 0.05FP  rad, turnR  205.50m) 
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Figure F.10: 2nd MPC Example for Different Helical Turn (1st Sensor Failure) 

( 40AV  kts, 0.1A  rad/s, 0.05FP  rad, turnR  205.50m) 

 



 184 

0 1 2 3 4 5 6 7

-0.1

0

0.1

0.2

Time (s)

 A
, 

A
, 

A
 (

ra
d)

 
 

 

A 

A,A 

A=-0.1

A=0.1

 

0 1 2 3 4 5 6 7
-20

0

20

Time (s)

u,
v,

w
 (m

/s
)

u

w

v

 

0 1 2 3 4 5 6 7
-1

0

1

Time (s)

p,
q,

r 
(r

ad
/s

)

p

q,r

 

0 2 4 6
0

0.1

0.2

Time (s)

 0
(r

ad
) 

          
0 2 4 6

-0.1
0

0.1

Time (s)

 c
(r

ad
) 

 

0 2 4 6
-0.2

0

0.2

Time (s)

 s
(r

ad
) 

         
0 2 4 6

-0.05
0

0.05
0.1

Time (s)

 T
(r

ad
) 

 

 
Figure F.11: 3rd MPC Example for Different Helical Turn (2nd Sensor Failure) 

( 40AV  kts, 0.1A  rad/s, 0.05FP  rad, turnR  205.50m) 
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Figure F.12: 4th MPC Example for Different Helical Turn   
(Robustness, No Sensor Failure) 

( 40AV  kts, 0.1A  rad/s, 0.05FP  rad, turnR  205.50m) 
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APPENDIX G 

Matlab Commands 

i. fsolve command is used to solve the trim equations.  

ii. ctrb and obsv commands are used to test controllability and observability of the LTI 

systems, respectively. 

( ( , ))p pn rank ctrb A B , ( ( , ))p pn rank obsv A C  

iii. are and lqr commands are used to solve two algebraic Riccati equations, respectively. 

10 p
T T T
p p p p p pXA A X XM V M X D W D        and    1T

pF XM V                              (G.1) 

10 T T T
p p p p p pKA A K KB R B K C QC        and    1 T

pG R B K                                  (G.2) 

 1, ,T T T
p p p p p pX are A M V M D W D ,    , , ,p pK lqr A B Q R  

iv. scmpc command is used to simulate MPC examples (see [83] for details). 
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APPENDIX H 

Adaptive SPSA 

     For the constrained SPSA, it is required that 

[ ] [ ]min k k k maxx x d x    and [ ] [ ]min k k k maxx x d x    

1. Firstly, examine [ ] 0k k id   

a. [ ] 1k i  ,  [ ][ ]min{( ) / | |}k ik k i mini
d x x    and [ ] [ ]min{( ) / | |}kmax i k ik i

d x x    

b. [ ] 1k i   , [ ][ ]max{( ) / | |}k ik min k ii
d x x    and [ ] [ ]max{( ) / | |}k i max k ik i

d x x    

2. Secondly, examine [ ] 0k k id   

c. [ ] 1k i  ,  [ ] [ ]max{( ) / | |}k i max k ik i
d x x    and [ ] [ ]max{( ) / | |}k i k ik mini

d x x    

d. [ ] 1k i   ,  [ ] [ ]min{( ) / | |}kmax i k ik i
d x x    and [ ][ ]min{( ) / | |}k ik k i mini

d x x    

It is clear that a, b, c, d, and /kd k d are simultaneously satisfied by choosing 

    min min min min/ ,0.95 ,l ui ik i
d k  

  
 
  

 d                                                                    (H.1) 

where l  and u  are vectors whose components are [ ][ ]( ) / k ik i mini
x x   for each positive  

[ ]k i  and [ ][ ]( ) /max k ik i i
x x   for each negative [ ]k i , respectively. 
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     For the constrained SPSA, it is also required that 

[ ] [ ]min k k k maxx x a g x     

3. Firstly, examine [ ] 0k k ia g   

e. [ ] 0k ig  ,   [ ] [ ])min /( k i k ik minia x x g   

f. [ ] 0k ig  ,   [ ] [ ])max /( k i k ik minia x x g    

4. Secondly, examine [ ] 0k k ia g   

g. [ ] 0k ig  ,   [ ] [ ])max /( k i k ik maxia x x g    

h. [ ] 0k ig  ,   [ ] [ ])min /( k i k ik maxia x x g    

It is clear that e, f, g, h, and /( )ka S k  a  are simultaneously satisfied by choosing  

 min min min min/( ) ,0.95 ( ), ( )i il uk i
a S k   

  
 
  

 a                                                            (H.2) 

where l  and u   are vectors whose components are [ ] [ ]( ) /k i min k ii
x x g  for each 

positive [ ]k ig  and [ ] [ ]( ) /maxk i k ii
x x g  for each negative [ ]k ig , respectively. 
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Figure H.1: Helicopter Linear Velocities Before and After Redesign  
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Figure H.2: Helicopter Angular Velocities Before and After Redesign  
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Figure H.3: Blade Flapping States Before and After Redesign  
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Figure H.4: Blade Main Lagging States Before and After Redesign  
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Figure H.5: Helicopter Linear Velocities Before and After Redesign for 2nd Example 
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Figure H.6: Helicopter Angular Velocities Before and After Redesign for 2nd 
Example 
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Figure H.7: Blade Flapping States Before and After Redesign for 2nd Example 
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Figure H.8: Blade Lagging States Before and After Redesign for 2nd Example 
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     Robustness of OVC was also examined for redesigned helicopter models. For the 1st 

example, the OVC, which was designed for the redesigned model linearized around 

40AV  kts, 0.1A  rad/s, 0.1FP  rad, was evaluated for the redesigned model 

linearized around 1AV  kt, 0.1A  rad/s, 0.1FP  rad. For the 2nd example, previous 

OVC was evaluated for the redesigned model linearized around 80AV  kts, 

0.1A  rad/s, 0.1FP  rad. For the 3rd example, the OVC, which was designed for the 

redesigned model linearized around 1AV  kt, 0A  rad/s, 0FP  rad (hover), is 

evaluated for the redesigned model linearized around 40AV  kts, 0A  rad/s, 

0FP  rad (straight level flight). For all of these examples, plant and measurement 

noises were considered with nondimensionalized intensities of 7 710 , 10 9W I V I  25  .  
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Figure H.9: 1st Additional Robustness Example for Redesigned Helicopter  
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Figure H.10: 2nd Additional Robustness Example for Redesigned Helicopter  
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Figure H.11: 3rd Additional Robustness Example for Redesigned Helicopter  

 

 

 




