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This article investigates modeling and modern control for a helicopter and slung-load system. For this
purpose complex, physics based, control oriented helicopter models are used. Point mass approach
is used to model the external load’s dynamics. The resulting nonlinear equations of motion are
then trimmed for straight level flights and linearized around these flight conditions. Behaviors of
representative trim variable values (i.e. cable angle and longitudinal and lateral cyclic blade pitch angles)
and modes (i.e. flight dynamics and load modes) are thoroughly examined while some model parameters
(e.g. cable length, load mass, and equivalent flat plate area) change. These behaviors are compared to data
found in the literature. Furthermore, variance constrained controllers (i.e. output variance constrained
and input variance constrained controllers) are applied for control system design. These controllers’
performance is examined when they are aware of the slung-load’s existence and when they are not
aware of the slung-load.

© 2013 Elsevier Masson SAS. All rights reserved.
1. Introduction

Carrying external loads has always been one of the important
missions of both military and commercial helicopters. The dynam-
ics of the overall system has received considerable attention since
the 1960s. At the time there were two main reasons for this in-
terest: the external load operations in the Vietnam war and the
heavy-lift helicopter program (HLH). Interest in the load carry-
ing ability of helicopters further grew due to the widespread use
of helicopters in commercial and civil operations, which requires
safe, rapid, and accurate deployment of heavy loads, eventually in
hard to reach, confined spaces and in adverse conditions (e.g. fast
emergy response in fire fighting, rescue missions in white out or
brown out conditions, medical emergency responses, etc.).

Several theoretical studies to model the dynamics of helicopter
slung-load systems were developed [24,12,13,37,10,8,16,43,38,44,
7,9,45,14]. To the best of our knowledge the first theoretical study
with slung-load carrying helicopter is described in [24]. For that
study a simple three degrees of freedom model for slung-load dy-
namics was used and aerodynamic forces and moments acting on
it were ignored. In Ref. [12] stability properties of a slung-load car-
rying helicopter with several feedback schemes were investigated.
In the second part of the previous study reported in [13] suitable
piloting strategies during different maneuvers were investigated. In
all these studies [24,12,13] only hover and low speed flight condi-
tions were investigated and the aerodynamic loads acting on the
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slung-load were neglected. In [37] stability of a slung-load carrying
helicopter was studied considering aerodynamic forces acting on
the external load. In that study using long cables, low weights and
high speeds improved the stability of the external load. In Ref. [10]
slung-load aerodynamics was also considered and via decreasing
the drag force acting on the slung-load the stability properties
were improved. We note that in order to gain rapid insight into
the slung-load problem it was customary to tremendously sim-
plify the load model. For example, in [8] the load was modeled
as a point mass that behaves like a spherical pendulum suspended
from a single point. However, recent works investigated more re-
fined models. For example in Refs. [7,9,45,14] a thorough unsteady
aerodynamics analysis was performed to model the slung-load car-
rying helicopter system.

Because of inherent helicopter flight instabilities, control de-
sign is vital for safe and performant helicopter operation. There-
fore, control systems were involved in helicopter design from the
early stages of both control and helicopter technology. Control de-
sign techniques for helicopters evolved throughout the years from
classical pole placement methods [15,16,39] and simple feedback
control approaches [2,1,21] to modern control methods based on
linear matrix algebra like Linear Quadratic Regulator (LQR) and
Linear Quadratic Gaussian (LQG) approaches [20,22,47,5], or H∞
control synthesis [25,23,46]. Several control theory techniques (e.g.
optimal control, adaptive control, feedback control) were applied
for slung-load carrying helicopters [6,39,35,3,17,4]. For example, in
[39] first some modes were redesigned to minimize pilot work-
load while maximizing the ability of the aircraft to maneuver
predictably and precisely. Cable angle feedback was then used to
improve stability of the helicopter slung-load system. Furthermore,
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Nomenclature

p,q, r Helicopter angular velocities . . . . . . . . . . . . . . . . . . . . deg/s
u, v, w Helicopter linear velocities . . . . . . . . . . . . . . . . . . . . . . . . m/s
φA, θA,ψA Helicopter Euler angles (roll, pitch, yaw) . . . . . . . deg
V A Flight speed of helicopter . . . . . . . . . . . . . . . . . . . . . . . . . knot

θ0, θc, θs Collective and two cyclic blade pitch angles . . . . . . deg
θS L, φS L Slung-load orientation angles . . . . . . . . . . . . . . . . . . . . . . deg
β0 Collective blade flapping angle . . . . . . . . . . . . . . . . . . . . deg
ζ0 Collective blade lagging angle . . . . . . . . . . . . . . . . . . . . . deg
in [4] the operation of a helicopter in minimum time with slung-
load through an environment with obstacles and with minimal
slung-load oscillations was studied. For this system state and con-
trol trajectories were generated by formulating an optimal control
problem.

In this article a different modern control strategy, namely vari-
ance constrained control [40–42,19,49,48] is applied to the heli-
copter slung-load system. Variance constrained control is an im-
proved LQG strategy because it guarantees satisfaction of con-
straints expressed using the output or the input variances. By
using variances, the control design process effectively manipu-
lates second-order information which is very advantageous be-
cause tractable solutions to quadratic optimal constrained control
problems are possible [40,41]. In control theory it is generally pre-
ferred to use second-order information because it permits param-
eterization of controllers in terms of physically meaningful data,
for example the state covariance matrix. Moreover, for strongly
coupled large multi-input and multi-output (MIMO) systems, like
the ones encountered in helicopter control, such methods offer
guarantees on the transient behavior of individual parameters by
imposing upper bounds on the variance of these variables.

The article presents first the development of the control ori-
ented helicopter model used in this work. Some trim and modal
data are given for Puma SA 330 to illustrate how this model cap-
tures the dynamics of realistic helicopters. Then trim and lineariza-
tion is performed for the helicopter slung-load model. Behaviors of
representative trim variable values such as longitudinal cable an-
gle and longitudinal and lateral cyclic blade pitch angles as well
as eigenvalues corresponding to fuselage (i.e. flight dynamics) and
load modes are examined while some model parameters (e.g. ca-
ble length, load mass, and equivalent flat plate area) change. These
behaviors are compared to data found in the literature, pointing
out similarities and differences. Lastly, output variance constrained
and input variance constrained controllers are designed using lin-
earized models of unloaded as well as slung-load carrying heli-
copters. The performance of these controllers is examined when
they are used for the system they are designed for, i.e. when they
are “aware” of the slung-load’s existence, and when they are not
aware of the slung-load. Based on these studies recommendations
regarding the implementation of such controllers are made.

2. Helicopter model

The modeling process used to develop the helicopter model
employed in this article was presented in [28] (for more details
the reader may consult [26]). In summary, this process involves ap-
plication of physics principles, directly leading to dynamic models
composed of finite sets of ordinary differential equations (ODEs).
This is very useful for control system design since it makes the di-
rect use of modern control theory easy. This is so because modern
control design relies on state space representations of the system’s
dynamics, which are readily obtained from ODEs. The models ob-
tained using the method summarized above capture both fuselage
and blade (i.e. flapping and lead-lagging, in some cases even blade
flexibility [28]) dynamics. These models consist of nonlinear ODEs,
but because they have too many terms their use in fast compu-
tation is impossible. Therefore, a systematic model simplification
method which does not alter the type or number of equations
was applied to reduce the number of terms in the nonlinear ODEs.
This method, which is popular in the helicopter literature, is called
“ordering scheme” and it amounts to eliminating terms that have
small magnitude with respect to dominant terms (see [28,26] for
more details).

The helicopter model obtained using the philosophy described
above includes fuselage, empennage (i.e. tail rotor hub and shaft,
and horizontal tailplane), landing gear, fully articulated main ro-
tor (i.e. with 4 blades and blade flapping and lagging hinges), and
main rotor downwash [28]. As a consequence, the model is fairly
complex with a total of 28 nonlinear equations: 9 fuselage equa-
tions, 8 blade flapping equations, 8 blade lead-lagging equations, 3
main rotor downwash equations. These nonlinear equations were
solved for trim conditions. In this article trim is defined as find-
ing the controls and state variables to achieve straight level flight
with constant speed (V A ). After inserting the trim conditions for
these nominal flights into the dynamic nonlinear system of 28
differential equations, 17 trim equations (i.e. 0 = 0 equations are
eliminated) with 17 unknowns were obtained. The trim values
of helicopter angular velocities (p, q, r) and yaw angle (ψA ) are
zero. The trim values of helicopter linear velocities were easily ex-
pressed using well known formulas [28] in terms of flight speed
(V A ), roll (φA ) and pitch (θA ) angles of helicopter. These trim equa-
tions were solved using Matlab for different straight level flight
conditions.

After trimming, the model was linearized using Maple, yielding
continuous linear time-invariant (LTI) systems

ẋp = Apxp + B pu (1)

where xp and u are the perturbed states and controls. Matrices A p

and B p are of size 25 × 25 and 25 × 4. Puma SA 330 helicopter
(see [36]) was used to validate the models used in our work. The
25 states are 9 fuselage states, 8 blade flapping states, and 8 blade
lead-lagging states, while the four controls are 3 main rotor (col-
lective, θ0, lateral cyclic, θc , and longitudinal cyclic, θs , blade pitch
angles) and 1 tail rotor (collective) control input.

To validate our helicopter model we compared trim values as
well as linearized dynamics data with data found in the literature.
In general these comparisons showed very good agreement with
existing data. For example, Table 1 presents the eigenvalues of the
flight dynamics modes for three straight level flight conditions ob-
tained using our model and the data in Ref. [36] for Puma SA 330.
Fig. 1 shows flapping and lead-lagging eigenvalues which were
found qualitatively similar to data reported in the literature (e.g.
Ref. [36]). The corresponding values of the trim states are given
in Eqs. (2a)–(2c). All trim results show good correspondence with
data in the literature (see Refs. [28,26]). Also see Refs. [27,29–34]
for other control applications of our helicopter models developed
and validated using this strategy.

hoverx0 = [0.2696,0.0315,−0.0377,0.4522
︸ ︷︷ ︸

θ00 ,θc0 ,θs0 ,θT0

, −0.0470,0.0170
︸ ︷︷ ︸

φA0 ,θA0

,

0.0882, 0.0378,0.0312,0
︸ ︷︷ ︸

β0 ,βc ,βs ,βd

,

0 0 0 0
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Table 1
Comparison of flight dynamics modes.

Mode (rad/s) Hover V A = 40 kts V A = 80 kts

Ref. [36] Our modes Ref. [36] Our modes Ref. [36] Our modes

1st (Dutch
Roll)

0.2772±0.5008i 0.2215±0.5966i −0.1543±0.9181i −0.0434±1.0846i −0.1854±1.0546i −0.1736 ± 2.0642

2nd (Phugoid) −0.0410±0.5691i 0.0587±0.3589i 0.0275±0.3185i −0.0143±0.3253i −0.0085±0.2074i −0.0138±0.1674i
3rd (Yaw sub-

sidence)
−0.2697 −0.1449 −0.0976 −0.0703 −0.1358 −0.04786

4th (Roll sub-
sidence)

−0.3262 −1.1944 −0.9817 −0.7140 −1.5163 −0.7587

5th (Roll-pitch
oscillation)

−1.2990±0.2020i −0.6536±0.3536i −1.0394±0.2798i −0.6125±1.1300i −0.9252±1.0503i −0.6759 ± 1.8865

Fig. 1. Helicopter blade flapping and lead-lagging modes.
0.0203,0.0042,−0.0059,0
︸ ︷︷ ︸

ζ00 ,ζc0 ,ζs0 ,ζd0

,

0.0437,11.7439,0.5263
︸ ︷︷ ︸

χ0,λ00 ,λc0

]T (2a)

40ktsx0 = [0.2753,0.0370,−0.0908,0.4857
︸ ︷︷ ︸

θ00 ,θc0 ,θs0 ,θT0

, −0.0456,0.0272
︸ ︷︷ ︸

φA0 ,θA0

,

0.0795,0.0592,0.0252,0
︸ ︷︷ ︸

β00 ,βc0 ,βs0 ,βd0

,

0.0218,0.0010,−0.0082,0
︸ ︷︷ ︸

ζ00 ,ζc0 ,ζs0 ,ζd0

,

1.2523,6.2236,9.2217
︸ ︷︷ ︸

χ0,λ00 ,λc0

]T (2b)

80ktsx0 = [0.2468,0.0319,−0.1017,0.3626
︸ ︷︷ ︸

θ00 ,θc0 ,θs0 ,θT0

, −0.0255,0.0110
︸ ︷︷ ︸

φA0 ,θA0

,

0.0748, 0.0463,0.0102,0
︸ ︷︷ ︸

β00 ,βc0 ,βs0 ,βd0

,

0.0159,−0.0028,−0.0071,0
︸ ︷︷ ︸

ζ00 ,ζc0 ,ζs0 ,ζd0

,

1.4825,3.1898,5.9822
︸ ︷︷ ︸

χ0,λ00 ,λc0

]T (2c)

where all the trim angles are in radians and downwash terms (i.e.
λ00 , λc0 ) are in m/s.
3. Slung-load modeling

The derivation of the governing equations of motion for the
external load follows [8,16,43,38,44], using the next set of assump-
tions. The external load is modeled as a point mass. The atmo-
sphere is stationary and a quasi-steady drag force acts in the di-
rection of the local airflow. The external load is not affected by the
main rotor and tail rotor inflow. The cable is inelastic and massless
and there is no aerodynamic force acting on the cable.

A helicopter slung-load system with all the required reference
frames is illustrated in Fig. 2 where M is the external load mass
and l is the cable length. The unit vectors of the hook frame
(x̂H , ŷH , ẑH ) are always parallel to those of the gravity frame. The
position of the external load is defined by two angles, θS L and φS L ,
where θS L is the angle between ẑH and the cable, and φS L is the
azimuth angle of the load. The position vector of the load with
respect to (w.r.t.) helicopter cg, �R , is

�R = �R H + �RL (3)

Here �R H is the position vector of the load w.r.t. the hook point and
in hook frame it is

�RL = −l sin(θS L) cos(φS L)x̂H + sin(θS L) sin(φS L) ŷH

+ cos(θS L)ẑH (4)

while �RL is the position vector of the hook point w.r.t. the heli-
copter’s center of gravity (cg) and in aircraft frame (whose unit
vectors are x̂A, ŷ A, ẑA ) it is

�R H = xS x̂A + yS ŷ A + zS ẑA (5)

The absolute velocity vector of the load w.r.t. the inertial frame is
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Fig. 2. Helicopter slung-load system.

�V = �V A + �ωA ⊗ �R (6)

where ⊗ denotes the vector cross product, �V A is the absolute ve-
locity of the helicopter w.r.t. the inertial frame, �ωA is the angular
velocity of the helicopter w.r.t. the inertial frame. In aircraft frame
they are

�V A = ux̂A + v ŷ A + wẑA, �ωA = px̂A + q ŷ A + rẑA (7)

The absolute acceleration vector of the load w.r.t. the inertial frame
is

�a = �aA + �̇ωA ⊗ �R + �ωA ⊗ ( �ωA ⊗ �R) (8)

where �aA is the absolute acceleration of the helicopter w.r.t. the
inertial frame. The drag force vector acting on the load is

�D = 1

2
ρ| �V | �V S (9)

where S is the equivalent flat plate area (which includes the drag
coefficient of the external load). The governing equations of the
slung-load’s motion were derived by summing up inertial, aerody-
namic, and gravitational moments around the suspension point.

�RL ⊗ (−M�a + M�g + �D) = 0 (10)

where �g is the gravitational acceleration vector.
When this approach is used to model the slung-load 4 addi-

tional nonlinear ODEs are generated which describe the load mo-
tion. Thus, at the end of the entire modeling process we obtain
a total of 32 nonlinear ODEs which describe the dynamics of the
helicopter slung-load system.

4. Trim and linearization

Recall that in this article trim is defined as the condition for
which straight level flight with constant speed is achieved. Com-
pared to the unloaded helicopter (i.e. helicopter without a slung-
load), there are 2 additional trim equations and 2 additional trim
unknowns for the slung-load (i.e. slung-load angles). Trimming
for this system was performed similarly with trimming of the
unloaded helicopter, i.e. by using Matlab’s fsolve procedure. The
results thus found were verified by inserting them into the non-
linear dynamic equations of motion of the helicopter slung-load
Fig. 3. Variation of longitudinal slung-load trim angle with flight speed (V A ).

system. Very small numbers (around 10−10) were found which
proves that our trimming procedure is correct. In Eqs. (11a)–(11c)
we give the trim values for three flight conditions (hover and
straight level flight at 40 and 80 kts), for M = 500 kg, l = 5 m,
S = 0.4 m2 whereas in Fig. 3 we give the variation of the trim
value of the angle θS L with the straight level flight speed, V A (note
that for straight level flight the trim value of φS L is always zero).
We remark that the addition of a load to the unloaded helicopter
leads to minor changes in the values of the trim parameters (see
Eqs. (2a)–(2c)). This is a very important observation because it in-
dicates that the trim conditions are robust with respect to load
addition, which is, of course, a desirable feature. Essentially, it is
one of the crucial requirements that a particular helicopter should
meet in order to be used in load carrying operations.

After trimming, the helicopter slung-load system was linearized
using Maple considering M = 500 kg, l = 5 m, S = 0.4 m2 where
S is the equivalent surface area of the load (see Appendix A, Ta-
ble A.1 for numerical values of key helicopter parameters; addi-
tional data can be found in Ref. [26]). Linearization resulted in
continuous LTI systems. Compared to the unloaded helicopter there
are 4 additional load states for the helicopter slung-load system,
i.e. longitudinal and lateral load angles, θS L and φS L , respectively,
and their time derivatives, θ̇S L and φ̇S L . For this system, Eq. (1),
which is the generic LTI system equation, applies with matrices
A p and B p of size 29 × 29 and 29 × 4.

S_hoverx0 = [0.2795,0.0356,−0.0361,0.4979
︸ ︷︷ ︸

θ00 ,θc0 ,θs0 ,θT0

,

−0.0458,0.0159
︸ ︷︷ ︸

φA0 ,θA0

,0.0959, 0.0361,0.0356,0
︸ ︷︷ ︸

β00 ,βc0 ,βs0 ,βd0

,

0.0224,0.0053,−0.0062,0
︸ ︷︷ ︸

ζ00 ,ζc0 ,ζs0 ,ζd0

,

0.0420,12.2398,0.5264
︸ ︷︷ ︸

χ0,λ00 ,λc0

]T (11a)

S_40ktsx0 = [0.2878,0.0428,−0.0918,0.5482
︸ ︷︷ ︸

θ00 ,θc0 ,θs0 ,θT0

,

−0.0458,0.0256
︸ ︷︷ ︸

φA0 ,θA0

,0.0871, 0.0577,0.0301,0
︸ ︷︷ ︸

β00 ,βc0 ,βs0 ,βd0

,

0.0246,0.0017, −0.0086,0
︸ ︷︷ ︸

ζ0 ,ζc ,ζs ,ζd

,

0 0 0 0
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1.2321,6.7215,9.7495
︸ ︷︷ ︸

χ0,λ00 ,λc0

]T (11b)

S_80ktsx0 = [0.2590,0.0365, −0.1043,0.4103
︸ ︷︷ ︸

θ00 ,θc0 ,θs0 ,θT0

,

−0.0258,0.0058
︸ ︷︷ ︸

φA0 ,θA0

,0.0821, 0.0441,0.0128,0
︸ ︷︷ ︸

β00 ,βc0 ,βs0 ,βd0

,

0.0181,0.0029, −0.0071,0
︸ ︷︷ ︸

ζ00 ,ζc0 ,ζs0 ,ζd0

,

1.4811,3.4633,6.4863
︸ ︷︷ ︸

χ0,λ00 ,λc0

]T (11c)

where all the trim angles are in radians and downwash terms (i.e.
λ00 , λc0 ) are in m/s.

5. Variance constrained controllers

Helicopters are always exposed to output and input limitations
and a key requirement is minimization of control energy. These re-
quirements are even more stringent for helicopters carrying loads
via a slung-load system. For example large deviations of the heli-
copter slung-load system from the trim position cannot be toler-
ated for safety reasons and for stability of the aggregate system.
Furthermore, control energy is generated by on board batteries or
via fuel consumption, in which case energy minimization is equiv-
alent to fuel consumption minimization. In either case, minimiza-
tion of control energy leads to mass reduction of the entire system,
which is always a desirable objective for airborne systems. For
these reasons, in this article modern output variance constrained
control (OVC) and input variance constrained control (IVC) (see
Refs. [40–42,19,49,48] for more details) are studied for helicopter
slung-load control system design. These controllers guarantee sat-
isfaction of output (OVC) or input (IVC) constraints while also re-
ducing the control energy.

The OVC idea is summarized next for completeness of the ar-
ticle. For a given continuous LTI system which is stabilizable and
detectable

ẋp = Apxp + B pu + w p, y = C pxp, z = Mpxp + v (12)

and a positive definite input penalty matrix, R > 0, find a full order
dynamic controller

ẋc = Acxc + F z, u = Gxc (13)

to minimize the control energy, i.e.

min
Ac,F ,G

E∞uT Ru (14)

subject to variance constraints on the output, i.e.

E∞ y2
i � σ 2

i , i = 1, . . . ,ny (15)

where z represents sensor measurements, w p and v are zero-
mean uncorrelated Gaussian white noises with intensities W and
V respectively, σ 2

i is the upper bound imposed on the i-th output
variance, and ny is the number of outputs. OVC solution reduces
to a linear quadratic Gaussian (LQG) problem by choosing the out-
put penalty matrix, Q > 0, function of the inequality constraints
on output variances. An algorithm for the selection of Q is pre-
sented in [19,49] and used herein. After converging on Q , OVC
parameters are

Ac = Ap + B p G − F Mp, F = X MT
p V −1, G = −R−1 BT

p K

(16)
where X and K are solutions of two algebraic Riccati equations:

0 = X AT
p + Ap X − X MT

p V −1Mp X + W (17a)

0 = K Ap + AT
p K − K B p R−1 BT

p K + C T
p Q C p (17b)

The IVC problem is basically the dual of OVC: for a given continu-
ous LTI, stabilizable and detectable system (Eq. (12)) and a given
positive definite output penalty matrix, Q > 0, a full order dy-
namic controller (Eq. (12)) must be found to solve

min
Ac,F ,G

E∞ yT Q y (18)

subject to

E∞u2
i � μ2

i , i = 1, . . . ,nu (19)

where μ2
i is the upper bound variance imposed on the i-th input,

and nu is the number of inputs. Note that whereas OVC explicitly
minimizes control energy, IVC reduces this energy via the inequal-
ity constraints on input variances. IVC solution reduces to a LQG
problem solution by choosing a positive definite input penalty ma-
trix, R > 0. An algorithm for the selection of R is also presented in
[49]. After converging on R , IVC is obtained using Eq. (16). Com-
pared to LQG, OVC and IVC provide an intelligent way of choosing
Q and R , which guarantees satisfaction of constraints.

6. Trim and stability results

6.1. Validation of helicopter slung-load system trims

As already mentioned we first conducted validation studies for
the helicopter model, which led to the conclusion that our model
captures both the trim conditions and the essential dynamics of
the unloaded helicopter accurately (see Section 2). In addition, we
also conducted numerous numerical experiments for the helicopter
slung-load system in order to validate the entire system. Some trim
results for this system were reported in Eqs. (11a)–(11c). The first
important conclusion is that our helicopter trim values are in the
range reported in the literature (see Refs. [8,16,43,38,44,26] for de-
tails and discussions). As already emphasized, these values do not
differ substantially from the values for the unloaded helicopter (i.e.
the helicopter is robust, as far as trim concerns, with respect to
load addition). We then focused our attention on validating the re-
sults for the load trim angles, as discussed next.

We extensively studied the variation of the longitudinal load
trim angle with key parameters, such as the mass of the load and
the trim flight speed, V A , or advance ratio, μ, ascertaining good
agreement with data reported in the literature. For example, when
the external load mass decreases, for a fixed flight speed the trim
value of the cable angle, θS L , becomes greater, and when the for-
ward flight speed increases, for a fixed mass, this angle increases
with the flight speed, as showed in Fig. 3. This behavior is simi-
lar to the one reported in [38] and expected from a force balance
analysis. The cable length does not affect the trim value of the ca-
ble angle, which is also similar with the observations reported in
[16] (see Fig. 3) and expected. Also, similarly with results reported
in [16], the value of the trim lateral cyclic blade pitch angle, θc ,
increases when load mass increases for any flight speed between
hover to 80 kts, or equivalently for advance ratios between 0 and
0.4, as showed in Fig. 4. The variation of this quantity with the ad-
vance ratio (or flight speed) is as well analogous to the variation
reported in Ref. [16]. Moreover, the value of the trim longitudi-
nal cyclic blade pitch angle, θs , increases for low advance ratios
(flight speeds) when the load mass, M , increases, which agrees
with results reported in [16] (see Fig. 5). On the other hand, this
quantity decreases for higher flight speeds (i.e. above 20 kts, which
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Fig. 4. Variation of trim lateral cyclic blade pitch angle with advance ratio (left: our results; right: results reproduced from Ref. [16]; note: μ = V A cos(αF )
Ω R , Ω R = 220.98 m/s

for UH-60, αF : fuselage angle of attack).

Fig. 5. Variation of trim longitudinal cyclic blade pitch angle with advance ratio (left: our results; right: results reproduced from Ref. [16]).
approximately corresponds to an advance ratio of 0.1) when the
load mass, M , increases, which also agrees with results reported
in [16] (see Fig. 5). Furthermore, both trim values of θc and θs are
not affected by cable length (see Figs. 3 and 4). The only discrep-
ancy between our results and those reported in Ref. [16] is noticed
in Fig. 5, for a small range of advance ratios (between 0.05 and
0.1), when the variation of the value of the trim longitudinal cyclic
blade pitch angle, θs , with the advance ratio (and flight speed) is
reversed compared to our results. This local discrepancy can be ex-
plained by inherent differences between the modeling procedure
used here and the one used in Ref. [16] and by the helicopter data
themselves (i.e. Puma SA 330 for our model and Sikorsky UH-60
for Ref. [16]). However, the overall conclusion that good agreement
was obtained is not substantially affected by this difference.

6.2. Validation of helicopter slung-load system poles

When control design is pursued it is important to make sure
that the open loop dynamics of the system to be controlled is
correctly captured by the model used in control design. For this
purpose we proceeded to validating: a) the flight dynamics modes;
b) the blade modes (flapping, lead-lagging modes); c) the load
modes because the subject of this article is the control of the en-
tire helicopter slung-load system. Validation of flight dynamics and
blade modes via eigenvalues comparison with data available in the
literature has been extensively studied and reported in our previ-
ous works for unloaded helicopters (e.g. Refs. [28,26] and [30]) for
numerous flight conditions, with or without blade flexibility mod-
eled. We also reported some of these validation data relevant to
the flight cases considered in this article in Table 1 and Fig. 1. In
the following, we focus on the novel aspects relevant to this article,
namely validation of the load modes. We note that our extensive
literature search revealed that very few papers report on the poles
(i.e. eigenvalues) of helicopter slung-load systems. No published
data has been found for Puma SA 330 but some papers report a
number of poles for UH-60. Therefore, this article is probably the
first one that reports on the poles of the helicopter slung-load sys-
tem for Puma SA 330. We compare these results with the ones
found in the literature for UH-60, but, of course, since the heli-
copters are different, discrepancies are expected to occur. These
discrepancies are pointed out in the following discussion.

For poles validation we performed the following analysis. We
first linearized the helicopter slung-load model for hover, S =
0.4 m2, l = 5 m, and different load masses, of 500, 1000, and
1500 kg. For all these scenarios we computed the eigenvalues
of the open loop matrix (i.e. matrix A p of size 29 × 29). The
first key observation is that the load modes have larger varia-
tions than the Dutch Roll and Phugoid modes when the load mass
changes. This agrees with results reported in Ref. [10] (also see
Fig. 6 reproduced from Ref. [16]). Second, the load modes display
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Fig. 6. Variation of some helicopter and slung-load modes with load mass (left: our results; right: results reproduced from Ref. [16]).

Fig. 7. Variation of some helicopter and slung-load modes with equivalent flat plate area (left: our results; right: results reproduced from Ref. [16]).

Fig. 8. Variation of some helicopter and slung-load modes with cable Length (left: our results; right: results reproduced from Ref. [16]).
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Fig. 9. Closed loop responses of some states using aware and unaware OVC for M = 500 kg.
variations with the mass comparable to the ones reported in
Ref. [16] and these variations are in the same direction (e.g. the
modes become more stable as the load mass increases). Also both
load modes are exponentially stable in our model as well as in
the one considered in Ref. [16]. In our model the frequency of the
first load mode displays a variation with the mass which is not
apparent in Ref. [16]. Third, the Phugoid mode is unstable while
mass is changing, both in our studies and in Ref. [16]. One dis-
crepancy we note here is that our Dutch Roll mode is unstable
whereas in Ref. [16] it is reported as being exponentially sta-
ble. We remark, however, that the results reported in Ref. [16]
were obtained for a different helicopter, namely UH-60, so differ-
ences between our results – for Puma SA 330 – and theirs are
expected to occur. Moreover, our Dutch Roll mode compared per-
fectly well with results reported for Puma SA 330 in Ref. [36] (see
Table 1).
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Fig. 10. Closed loop responses of some controls and longitudinal slung-load angle state using aware and unaware OVC for M = 500 kg.
We also studied the variation of the poles with the equiva-
lent flat plat area, S . For this purpose we linearized the helicopter
model around straight level flight. In Fig. 7 (left) we give the re-
sults obtained for μ = 0.2, M = 1000 kg, l = 5 m. In Fig. 7 (right)
we reproduce results from Ref. [16] obtained for the UH-60 he-
licopter and the same flight and load data: advance ratio of 0.2
and load mass of 1000 kg. We first notice that the load modes are
exponentially stable with the first mode displaying a small varia-
tion with S compared to the second load mode. We also remark
that the results agree qualitatively with those of Ref. [16] in the
sense that all load modes are exponentially stable and their rela-
tive location in the complex plane as well as the relative size of
the variations with S are similar with the ones ascertained by us
(left of Fig. 7). The only minor discrepancy noted as far as the load
modes are concerned is that the real part of the second load mode
increases in our model with S , which is an opposite tendency
to the one reported in Ref. [16]. Other discrepancies concern the
Dutch Roll and Phugoid modes, which are unstable in our model.
As noted in the previous paragraph, this is expected since we work
with a different helicopter than Ref. [16]. Nevertheless, the varia-
tions of these flight dynamics modes with S are rather negligible
and in the same direction as reported in Ref. [16].

Lastly, in Fig. 8 we also present results that address the varia-
tion of load modes and some helicopter modes with cable length,
l, for a model linearized around hover and for M = 500 kg, S =
0.4 m2. We first note that both load modes are exponentially sta-
ble, with the first load mode being more stable than the second
(see Fig. 8 right, which reports data for UH-60). Also the frequency
of the load modes decreases with increasing cable length, which
is similar to the behavior reported in Ref. [16]. The Phugoid mode
is unstable and displays a negligible variation when cable length
changes, which also agrees with Ref. [16]. Like in the previous
cases (i.e. Figs. 5 and 6), the discrepancy between the Dutch Roll
modes, unstable in our model and exponentially stable in Ref. [16],
persists due to the inherent differences between the two heli-
copters.

7. Control design and closed loop simulation results

A major issue in slung-load operations is the ability of the con-
trol system to maintain good performance and stability properties
in the presence of uncertainties and the slung-load. Hence, for con-
trol design we consider as outputs of interest the Euler angles, i.e.
we are interested in maintaining the attitude of the load carry-
ing helicopter in the presence of measurement noise, model noise,
and the slung-load. Guaranteeing that Euler angles variations are
small is of the utmost importance for load carrying helicopters for
a number of reasons that range from maintaining visual contact
(e.g. for line of sight communication), to proper delivery of the
load and landing. We also note that including control requirements
(e.g. constraints) on the load itself is not expected to be effective
because there is no direct control of the load, i.e. in the current
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Fig. 11. Closed loop responses of some states using aware and unaware OVC for M = 100 kg.
scenarios the controls (also referred to as inputs) are all of the he-
licopter traditional controls, i.e. 3 main rotor controls and 1 tail
rotor control. There is no physical control on the slung-load be-
cause the cable is a simple passive element.

For the first set of control design results presented next, the
nonlinear helicopter slung-load model with M = 500 kg, l = 5 m,
S = 0.4 m2 was linearized around straight level flight at V A =
40 kts. Then the 1st OVC controller was designed for this lin-
earized model with output variance constraint σ 2 = 10−4 [ 1 1 0.1 ]
on the helicopter Euler angles. The 1st IVC controller was also
designed for this linearized model with input variance constraint
μ2 = 10−5 [ 1 1 1 ] on all helicopter controls. Next, we designed
controllers for the unloaded (i.e. no slung-load carrying) helicopter
as follows: the 2nd OVC and 2nd IVC controllers were designed



JID:AESCTE AID:2898 /FLA [m5Gv1.5; v 1.94; Prn:24/04/2013; 9:05] P.11 (1-17)

T. Oktay, C. Sultan / Aerospace Science and Technology ••• (••••) •••–••• 11
Fig. 12. Closed loop responses of some controls and longitudinal slung-load angle state using aware and unaware OVC for M = 100 kg.
for the linearized model of the unloaded helicopter at the same
straight level flight condition (i.e. V A = 40 kts) and considering the
same variance constraints (i.e. σ 2 = 10−4 [ 1 1 0.1 ] for OVC and
μ2 = 10−5 [ 1 1 1 1 ] for IVC). Since the 1st OVC and 1st IVC con-
trollers were designed for the linearized model of the helicopter
slung-load system, they were named “aware” controllers. Simi-
larly, because the 2nd OVC and 2nd IVC controllers were designed
for the linearized model of the unloaded helicopter, they were
called “unaware” controllers. These denominations need some ex-
planation. The unaware controllers are controllers that have been
designed for the unloaded helicopter only. They have a fixed ar-
chitecture and once implemented they cannot be modified to ac-
commodate for configuration changes or the addition of a load. On
the other hand, the “aware” controllers are specifically designed
for load carrying missions, hence they are indeed “aware” of the
load. Switching between aware and unaware controllers can be
performed however, for practical implementation this requires ad-
ditional equipment (e.g. a supervisory control) which might not
be available. Therefore, the study of “unaware” controllers in the
presence of a slung-load is very valuable because it indicates the
expected performance that can be obtained only with these con-
trollers.

Note that for the numerical experiments reported in this ar-
ticle, the sensor measurements were helicopter linear velocities,
angular velocities and Euler angles, and the nondimensionalized
noise intensities were W = 10−7 I29, V = 10−7 I9. In general V de-
pends on sensor quality (high quality sensors correspond to small
V ) whereas W is dictated by the quality of the modeling pro-
cess. These intensities are apparently small for two reasons. Firstly,
these are in fact nondimensionalized values. To get dimensional
values some of the components of W must be multiplied by large
numbers (i.e. for the linear velocities a factor of 202.5 m/s and
for the angular velocities a factor of 27 rad/s are necessary for
Puma SA 330). Secondly, because of the sophisticated modeling,
which accounts for many physical effects, the models are consid-
ered sufficiently accurate (see [26] for larger noise intensities on
no slung-load carrying helicopters). The states and controls are in
nondimensional form for computations, but they are dimensional-
ized in the simulation figures. Also note that all states and controls
given in the figures are variations from the nominal values, as it is
typically the case when linearization is used.

7.1. OVC results

OVC control design was pursued using the data and scenarios
described in the previous paragraphs. Convergence of the gain se-
lection algorithm used to design OVC controllers was fast (e.g. 8
iterations for the 1st OVC controller) despite of the fact that the
systems are large (e.g. matrix A p size is 29 × 29).

After control design we evaluated closed loop systems perfor-
mance. For this purpose we created the 1st closed loop system
by integrating the linearized helicopter slung-load system and the
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Fig. 13. Closed loop responses of some states using IVC for M = 500 kg.
aware OVC controller. This controller is expected to perform very
well in the ideal operational condition when the helicopter car-
ries a load. The 2nd closed loop system was created by integrating
the linearized helicopter slung-load system and unaware OVC con-
troller. This second scenario corresponds to the situation when the
helicopter is not equipped with an additional supervisory control
to determine that switching between controllers (i.e. to the aware
OVC controller) is necessary when load is added to the helicopter.
It is also a very likely situation to occur when a helicopter which is
not normally tasked to carry loads is required (e.g. due to an emer-
gency situation) to perform such a mission. In Fig. 9 closed loop
responses of selected helicopter states (i.e. φA, θA , w , r, β0, ζ0)
and in Fig. 10 closed loop responses of selected controls (i.e. θ0,
θc , θs) and longitudinal slung-load angle state (i.e. θS L ) are given
for both aware and unaware controllers. For the closed loop simu-
lations both systems were excited using white noise perturbations
of nondimensionalized intensities W = 10−7 I29, V = 10−7 I9.

The first observation is that these controllers are both expo-
nentially stabilizing the corresponding closed loop systems. This
is guaranteed by the OVC theory [40,41] for the first closed loop
system, whereas for the second it indicates that the unaware OVC
controller has good stability robustness properties with respect to
modeling uncertainties introduced by the load. Note that exponen-
tial stability of the 2nd closed loop was ascertained by computing
the poles of the linear closed loop system, which were all located
in the left hand side of the complex plane. Second, from Figs. 8
and 9 we see that the responses of φA , θA , w , r, β0, ζ0, θS L ob-
tained when the aware OVC controller was used are within small,
expected limits, and do not display dangerous behavior. Our ex-
tensive numerical experiments showed that these conclusions are
valid for all states. Closed loop responses of some other states (i.e.
u, v , p, q, βc , βs , ζc , ζs) are given in Figs. A.1 and A.2 in Ap-
pendix A. For the Euler angle states this is expected because the
aware OVC controller was specifically designed to minimize the
variances of these outputs. Fig. 10 also shows that this good be-
havior is achieved by the aware OVC controller with very small
control variations, which is a reflection of the fact that this con-
troller minimizes control energy.

When analyzing the performance of the unaware OVC con-
troller, we note from Fig. 9 that the responses of φA , θA , w , r,
β0, ζ0, θS L are similar to the ones found using the aware OVC con-
troller. However, Fig. 10 shows that this comes at an unreasonable
price: the responses of θ0, θc , θs when the unaware controller is
used are much larger than the ones obtained using the aware con-
troller. Actually these variations are so large that even the small
angles assumption used in linearization is violated. These results,
which are expected because the unaware controller was not de-
signed for the load carrying scenario, clearly advocate for the addi-
tion of a supervisory control system to switch between controllers
when load is added to/discarded from the helicopter. Controllers
for slung-load carrying helicopters could be, for example, imple-
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Fig. 14. Closed loop responses of some controls using IVC for M = 500 kg.
mented as gain scheduled controllers where the key parameter
that governs the scheduling process is the slung-load mass.

In order to confirm the results illustrated in Figs. 8–9, we re-
peated the linearization and control design process for other flight
conditions, specifically, hover and straight level flight at 80 kts.
We then created closed loop systems using aware and unaware
controllers and simulated their responses to white noise exci-
tations. These simulations are not reproduced here for brevity,
however at the end of this process we reached conclusions sim-
ilar to the ones obtained for straight level flight at 40 kts: the
controllers are exponentially stabilizing the corresponding closed
loop systems, displaying good stability robustness, but the unaware
controllers have to work much harder to accommodate heavy
loads.

Note that unaware OVC controllers can still be used for smaller
loads. For example Figs. 11–12 show that the counterparts of
Figs. 9–10 for M = 100 kg. Clearly, the unaware OVC controller
is capable of safely handling this load with tolerable control varia-
tions.

7.2. IVC results

To complete the study of variance controllers on helicopter
slung-load systems we repeated the analysis carried out in Sec-
tion 7.1 for IVC control design. For this purpose we created the
1st and 2nd closed loop systems in a similar way with the ones
used in OVC studies, i.e. using aware and unaware IVC controllers,
respectively. We then simulated closed loop responses when the
systems are subject to the same white noise perturbations like
their counterparts in the closed loop OVC control analysis. In
Fig. 13 closed loop responses of selected states (i.e. φA , θA , w ,
θS L ) and in Fig. 14 closed loop responses of selected controls
(i.e. θ0, θc , θs) are given for both aware and unaware IVC con-
trollers.

Similarly with the OVC case, both closed loop systems obtained
using IVC controllers are exponentially stable. Therefore, the un-
aware IVC controller displays good stability robustness with re-
spect to load addition, similarly with OVC unaware controllers.
Fig. 13 shows that the responses of φA , θS L obtained using the
aware IVC controller are similar to the ones found using the un-
aware IVC controller. However, we remark from Fig. 14 that this
time, even though the responses of θ0, θc , θs obtained using the
unaware IVC controller are larger than the ones obtained using the
aware IVC controller, they do not exhibit unreasonably large vari-
ations like in the unaware OVC case (i.e. Fig. 10). This fact can be
explained by the nature of IVC control design, which explicitly im-
poses constraints on the variance of each control input, unlike OVC
control design.

Extensive numerical experiments indicate that these conclu-
sions are suitable for all states and all controls. In Figs. A.3 and
A.4 responses of some other states (i.e. u, v , p, q, βc , βs , ζc , ζs)
are given (see Appendix A). All these conclusions drawn in this
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subsection are also valid for other flight conditions (e.g. hover and
80 kts).

B. Conclusions

A control oriented, physics based helicopter and slung-load
model was developed. The helicopter model includes blade flap-
ping and lead-lagging dynamics while for the slung-load a point
mass model was used. A quasi-steady aerodynamic drag force act-
ing on the slung load was modeled in the direction of the local
airflow. The resulting nonlinear equations of motion of the he-
licopter slung-load system were trimmed and linearized around
different straight level flight conditions. The behaviors of the re-
sulting trims (i.e. cable angle, longitudinal and lateral cyclic pitch
angles) and modes (i.e. load modes, Phugoid mode, and Dutch
roll mode) as functions of some parameters (i.e. cable length, load
mass, equivalent flat plate area, and flight speed) were thoroughly
analyzed. These studies resulted in modes and trim values that
are in the range reported in the literature. Discrepancies between
these behaviors and those reported in the literature can be ex-
plained primarily by the differences between helicopter types.

Linearized models were used for the design of output vari-
ance constrained (OVC) and input variance constrained (IVC) con-
trollers. These controllers were designed both for linearized models
of unloaded helicopters, and called “unaware” (i.e. of the load)
controllers, and for linearized models of slung-load carrying he-
licopters, and called “aware” controllers. Closed loop system re-
sponses of selected states and controls were given and these con-
trollers performance was examined. All variance constrained con-
trollers studied (aware as well as unaware) exponentially stabi-
lized the nominal flight conditions. Behaviors of closed loop system
states using aware variance constrained controllers are close to the
ones obtained using unaware controllers. However, the aware con-
trollers showed much better performance than unaware ones in
terms of control responses. Specifically, the unaware controllers
displayed larger variations for the controls than the aware con-
trollers. Increasing control inputs raises control cost and may cause
failure of operation.

Therefore, using aware variance constrained controllers during
slung-load operations is advantageous both for energy efficiency
and safety. This requires switching between controllers when load
is added to/discarded from the helicopter. Since switching can
nowadays be reliably implemented due to recent advances in con-
trol technology, signals processing, microelectronics, power elec-
tronics, and microprocessors, using aware variance constrained
controllers is highly advised.

Appendix A

This appendix contains additional OVC results (see Figs. A.1,
A.2), additional IVC results (see Figs. A.3, A.4) and key helicopter
parameters (see Table A.1),
Fig. A.1. Closed loop responses of additional fuselage states using OVC for M = 500 kg.
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Fig. A.2. Closed loop responses of additional blade states using OVC for M = 500 kg.

Fig. A.3. Closed loop responses of additional fuselage states using IVC for M = 500 kg.
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Fig. A.4. Closed loop responses of additional blade states using IVC for M = 500 kg.

Table A.1
Important configuration data of Puma SA 330.

Quantity Symbol Magnitude Reference

Moments of inertia Ixx 9638 kg m2 [36]
I yy 33 240 kg m2

Izz 25 889 kg m2

Ixz 2226 kg m2

Number of blades Nb 4 [36]
Rotor radius R 7.5 m [36]
Hinge offset e 0.285 m [36]
Main rotor angular velocity Ω 27 rad/s [36]
Helicopter mass Ma 5805 kg [36]
Flapping spring stiffness coefficient Kβ 48 149 N m/rad [36]
Lagging spring stiffness coefficient Kζ 100 000 N m/rad [36]∗
Lagging damper damping coefficient Cζ 10 000 N m s/rad [36]∗
Blade inertia Ib 1280 kg m2 [36]
Blade twist θt w −0.14 rad [36]
Blade profile drag δ0 0.01 [11]
Blade induced drag δ2 0.4 [11]
Blade lift coefficient a 5.73/rad [36]
Vertical distance helicopter’s center of gravity (cg) to hub h 2.157 m [36]∗
Vertical distance cg to tail rotor zT 1.585 m [36]
Horizontal distance cg to tail rotor xT 9 m [36]
Tail rotor thrust coefficient KT 8000 N/rad ∗
Vertical distance cg to nose zF 0.55 m [36]∗
Horizontal distance cg to nose xF 3.80 m [36]∗
Fuselage skin friction coefficient cd f 0.02 [18]∗
Fuselage pressure drag coefficient cdp 1.2 [18]∗
Fuselage length l 14 m [36]∗
Fuselage diameter d 3 m [36]∗
Lock number γ 9.374 [36]

∗ Estimated parameter using available data.
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