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This article proposes simultaneous helicopter and control system design and illustrates its advantages. First, the

traditional, sequential approach in which a satisfactory control system is designed for a given helicopter is applied.

Then, a novel approach, inwhich the helicopter and control systemare simultaneously designed, is applied to redesign

the entire system. This redesign process involves selecting certain helicopter parameters as well as control system

parameters. For both design procedures the key objectives are to minimize control energy and satisfy prescribed

variance constraints on specific outputs. In order to solve the complex optimization problem corresponding to the

simultaneous design approach, an efficient solution algorithm is developed by modifying the simultaneous

perturbation stochastic approximation method to account for limits on optimization parameters. The algorithm is

applied to redesign helicopters using models generated in straight level as well as maneuvering flight conditions. The

performance of the designs obtained using the sequential and simultaneous design approaches is compared and the

redesign process is thoroughly investigated. Finally, the robustness of the redesigned systems is also studied.

Nomenclature

c = blade chord length, m
Kβ = blade flapping-spring stiffness coefficient,

N · m∕rad
m = blade linear mass density, kg∕m
p, q, r = helicopter angular velocities, rad∕s
R = blade length, m
u, v, w = helicopter linear velocities, m∕s
VA = flight speed of helicopter, m∕s
γFP = flight-path angle, rad
β0, βc,
βs, βd

= collective, two cyclic, and differential blade
flapping angles, rad

ζ0, ζc,
ζs, ζd

= collective, two cyclic, and differential blade
lagging angles, rad

θT = collective tail rotor angle, rad
θtw = blade twist, rad
θ0, θc, θs = collective and two cyclic blade pitch angles, rad
ϕA, θA, ψA = helicopter Euler angles, rad
_ψA = helicopter turn rate, rad∕s
Ω = main-rotor angular speed, rad∕s

I. Introduction

T RADITIONALLY, a model of the system to be controlled (e.g.,
helicopter, structure, etc.), also referred to as the “plant” in the

following, is given a priori to the control engineer who has no
influence on this system’s design. However, it is known that the plant
and control-system design problems are not independent [1,2].
Changes in some plant parameters may improve performance signif-
icantly, as shown for example in [3–5]. The traditional sequential
approach: 1) design the plant first, and 2) design the control system
after that does not provide the best overall design [1,2]. Ideally, we
should simultaneously design the system to be controlled as well as
the control system such that a given objective (e.g., cost function) is

optimized, eventually subject to additional constraints. In this article
we pursue this idea and redesign a helicopter by simultaneously
designing the helicopter over blade and operation parameters and a
control system to minimize the active control energy while obeying
constraints on the physical parameters of the helicopter and on the
closed-loop system response.
Previous work in helicopter redesign was focused on passive

design (i.e., control-system parameters were not included). For
example, in [6], a redesign optimization study is performed in which
rotor dynamics and flight dynamics are simultaneously taken into
account to maximize the damping of a rotor lag mode with respect to
certain design parameters (e.g., blade torsion stiffness, blade chord
length). In another study [7], vibratory loads at the rotor hub, which
are the main sources of helicopter vibration, are reduced by
redesigning the helicopter using certain variables (e.g., blade lag and
torsion stiffness). Several other papers [8,9] also report helicopter
redesign studies, while in [3,4] the main-rotor speed is allowed to
vary to improve helicopter’s stability.
In the simultaneous design study presented in this article we use

complex helicopter models that include relevant physics, such as an
analytical formulation for fuselage aerodynamics, blade flapping and
lead lagging, tail rotor and empennage aerodynamics, main-rotor
downwash, landing gear effects, etc. The main philosophy of our
modeling process is to develop physics-based, control-oriented
models that capture the “essential dynamics”. By essential dynamics,
we mean (in addition to the dynamics to be controlled) dynamics
directly affected by control design and crucial for safe and performant
operation. For example, even if the primary goal of the control design
is to control flight dynamicsmodes, we are interested to capture blade
flapping and lead-lagging modes and monitor their behavior in the
closed-loop configuration. Of course, development of such models
requires a multibody dynamics approach, presented in detail in [10],
which also shows how these models have been validated against trim
and dynamics data that are available in the published literature.
For control design, themodels discussed in the previous paragraph

are linearized around specific flight conditions (i.e., straight level
flight, level banked turn, and helical turn). The modern controllers
we study are variance-constrained controllers that present several
advantages. First, these controllers are enhanced linear quadratic
Gaussian (LQG) controllers that use state estimators (i.e., Kalman
filters). State estimators are crucial for complex systems such as
helicopters because some states cannot be easily measured. Second,
these controllers use second-order information, namely the state
covariance matrix [11–19]. This is very important for multivariable
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control design because it enables parameterization of all stabilizing
controllers in terms of the state covariancematrix,which is physically
meaningful. Third, for strongly coupled, large multi-input multi-
output systems, like the ones encountered in helicopter control and
particularly in our work [10], variance constrained control design
methods guarantee good transient behavior of individual variables by
enforcing upper bounds on the variance of these variables.
The helicopter design parameters involved in this study are blade

length, chord length, flapping-spring stiffness, twist, linear mass
density, and main-rotor angular speed. Selection of these particular
parameters as design variables is primarily motivated by technologi-
cal advances. Specifically, it has beenvery recently indicated that it is
both feasible and desirable to alter the blade length, blade chord
length, blade flapping-spring stiffness, blade twist, blade linear mass
density, and main-rotor angular speed to improve the handling
qualities and performance of helicopters; see [3–5,20–26]. For
example, in [5], several morphing concepts (i.e., variable main-rotor
angular speed, blade length, blade chord length, and blade twist) are
investigated to improve helicopter performance, showing that both
variable rotor speed and variable blade chord lead to significant
improvement in the rotor performance in cruise. Moreover, in [26], a
morphing mechanism to extend the chord of a section of the
helicopter rotor blade is presented. In this study, a morphing cellular
structure is developed, and the blade chord is increased by 30%. This
mechanism is first computationally designed, then also fabricated
and experimentally proven to be reliable and effective. This article
intends to exploit and promote these very recent technological
advances in the area of morphing helicopter blade by showing how,
when combined with advanced control design, they can substantially
improve helicopter performance.
The simultaneous design problem we obtain by combining our

helicopter models and dynamic feedback variance controllers is a very
complex constrained optimization problem, which does not allow
analytical computation of derivatives (e.g., gradients, Hessians).
Because deterministic numerical approximation of these derivatives
for such complex problems is prohibitive and possibly numerically
unstable, we selected a fast stochastic optimization method, simulta-
neous perturbation stochastic approximation (SPSA), to solve the
optimization problem. SPSA was selected primarily due to its
previous success in rapidly solving similar, highly complex and
constrained optimization problems [27,28] and due to existing
theoretical guarantees on its convergence in probability to an optimal
solution [27]. Moreover, in this paper, we improved the classical
SPSA by taking into account inequality constraints on the design
parameters. This resulted in an algorithm that is very efficient in
rapidly decreasing the control energy while satisfying all the con-
straints, illustrating the effectiveness of using SPSA for simultaneous
helicopter and control-system design. We also comprehensively
evaluated the redesigned helicopters obtained using our design
method. For this purpose, complex helicopter models were linearized
around different straight level flight conditions as well as
maneuvering-flight conditions. Then, their performance, including
control energy savings and closed-loop responses, were compared
with those of the nominal helicopter. Robustness properties of these
redesigned helicopters were also investigated with respect to
modeling uncertainties (i.e., flight conditions and helicopter inertial
parameters variations), leading to the evaluation of controllers that
are aware and unaware of the flight condition.
This article is an extended and enriched version of our AIAA

conference paper Ref. [29], which only included the main redesign
idea and simple examples, without comprehensive evaluation or
robustness studies. The main contributions of this article are a
complete process of simultaneous helicopter and advanced control-
systemdesign, including a thorough analysis of robustness properties
of the redesigned helicopters with respect to modeling uncertainties.
This is the first article which shows that such a process is feasible and
effective, resulting in substantial energy savings (from 33 to 57%)
with small changes in design parameters (from 5 to 10%) over a wide
flight envelope. Evidence is provided to show that the simultaneous
design approach is clearly superior in terms of achievable
performance with respect to the classical sequential approach.

A novel, adaptive SPSA algorithm, which accounts for upper and
lower limits on optimization parameters, is also developed, and its
performance is evaluated.

II. Model and Control System

A. Control-Oriented Helicopter Model

Our modeling approach, presented in detail in [10] (see also
[29,30]), involves application of physics principles, directly leading
to dynamic models composed of finite sets of ordinary differential
equations (ODEs). These models are extremely advantageous for
control-system design because they facilitate the direct use ofmodern
control theory. Modern control design relies on state-space represen-
tations of the system’s dynamics, which are readily obtained from
ODEs. In contrast, if application of the physics principles leads to
partial differential equations (PDEs) models, to obtain a finite set of
ODEs from the infinite dimensional set of PDEs, much work is
required to retain a finite number of modes. In this case, only several
ODEs are retained, usually selected to capture the modes that are
considered relevant for control-system design. This process results in
qualitative and quantitative alteration of the original PDEs based
mathematical model and complicates the verification and validation
of the control system. On the other hand, the models obtained using
our approach consist of nonlinear ODEs but have too many terms,
making their use in fast computation impossible. Therefore, a
systematic simplification method presented in detail in [10], called
“ordering scheme,” was applied to reduce the number of terms.
The helicopter model obtained using the philosophy summarized

previously includes fuselage, empennage, landing gear, fully articu-
lated main rotor (i.e., with four blades), main-rotor downwash, and
tail rotor [10]. As a consequence, the model is fairly complex with a
total of 29 equations: 9 fuselage equations, 16 blade flapping and
lead-lagging equations, 3 static main-rotor downwash equations, and
an additional flight-path angle algebraic equation. For this study, we
considered several flight conditions: straight level flight, level
banked turn, and helical turn, briefly described next. For these turning
flights we obtained 21 trim equations (i.e., 0 � 0 equations are
eliminated) with 21 unknowns, which were solved using Matlab.
Level banked turn is a planar (i.e., two-dimensional), circular

maneuver in which the helicopter banks toward the center of the
turning circle (see Fig. 1a). For helicopters, the aircraft roll angle ϕA
is, in general, slightly different from the bank angle ϕB. Coordinated
banked turn is a banked turnwithϕA � ϕB, but this is not the focus of
this work. Figure 1a depicts these angles for a particular case
(θA � 0), withFresultant representing the sum of the gravitational (W)
and centrifugal (Fcf) forces. Helical turn is a spatial (i.e., three-
dimensional) maneuver in which the helicopter moves along a helix
with constant speed (see Fig. 1b). Note that _ψA > 0 is a clockwise
turn, and _ψA < 0 is a counterclockwise turn (viewed from the top),
while γFP > 0 means that the flight is ascending and γFP < 0 means
that it is descending [10,29,30].
After trimming, the model was linearized around the particular

trim condition using Maple, yielding a continuous linear time-
invariant (LTI) system (i.e., the plant):

_xp � Apxp � Bpu (1)

where xp and u are the perturbed states and controls. MatricesAp and
Bp are of size 25 × 25 and 25 × 4. There are 25 states (nine fuselage
states, eight blade flapping states, and eight blade lead-lagging
states), 3 main rotor (collective and two cyclic blade pitch angles),
and 1 tail rotor (collective angle) control inputs. A Puma SA 330
helicopter (see [31]) was used to validate the models used in this
article [10].

B. Output Variance Constrained Control

For control design, we selected output variance constrained (OVC)
controllers, which are dynamic feedback controllers that minimize
control energy subject to variance constraints on the outputs.
The feasibility of using these controllers for our complex,
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control-oriented helicopter models was illustrated recently in [19].
For OVCdesign, the problem described nextmust be solved [11–19].
Given a continuous LTI, stabilizable and detectable system

(i.e., the plant),

_xp � Apxp � Bpu�wp; y � Cpxp; z � Mpxp � v
(2)

and a positive–definite input penaltyR > 0, find a full-order dynamic
controller,

_xc � Acxc � Fz; u � Gxc (3)

to solve the problem

min
Ac;F;G

J � E∞u
TRu � tr�RGℵGT� (4)

subject to

E∞y
2
i ≤ σ2i ; i � 1; : : : ; ny (5)

Here, y is the vector of system outputs, z represents sensor measure-
ments, wp and v are zero-mean uncorrelated process and
measurement Gaussian white noises with intensities Wp and V,
respectively, and xc is the controller state vector.MatricesF andG are
state estimator and controller gain, respectively; J is the control
energy; ℵ is the state covariance matrix; σ2i is the upper bound
imposed on the ith output variance; and ny is the number of outputs.
Last, tr denotes the matrix trace operator, min is the minimization
operator, E∞ ≜ limt→∞E, and E is the expectation operator.
Effectively, OVCs are enhanced LQGs because they guarantee

satisfaction of constraints of output variances. The OVC solution
actually reduces to a LQG problem solution by choosing output
penaltyQ > 0 depending on the inequality constraints. An algorithm
for the selection ofQ is presented in [14,15]. After converging onQ,
OVC parameters are

Ac � Ap � BpG − FMp; F � XMT
pV

−1;

G � −R−1BTpK (6)

where X and K are solutions of two algebraic Riccati equations:

0 � XATp � ApX − XMT
pV

−1MpX�Wp;

0 � KAp � ATpK − KBpR−1BTpK � CTpQCp
(7)

Compared to standard LQG, where Q and R are selected ad hoc and
constraints are not taken into account, OVC provides an intelligent

way of choosing Q, which guarantees satisfaction of con-
straints on the variance of the outputs while minimizing control
energy.
Note that, for all of the numerical experiments reported herein (i.e.,

OVCdesigns and closed-loop simulations), the sensormeasurements
were helicopter linear velocities, angular velocities, and Euler angles.
The outputs of interest were helicopter Euler angles.

III. Statement of the Design Problem

The simultaneous helicopter and control-system design problem is
summarized next:

min
Ac;F;G;x

J � E∞u
TRu (8)

subject to Eqs. (2, 3, 5) where x � fc;Kβ; m; R; θtw;Ωg is the set of
helicopter optimization parameters. The elements of x are
constrained, i.e., ximin

≤ xi ≤ ximax
(see Table 1).

Note that matrices Ap and Bp are functions of x. This leads to a
complicated optimization problem in which both the objective J and
the variance constraints depend on the optimization variables in a
sophisticated manner; the expectation operator has to be applied to
time-varying responses that depend on x as well as on controller
parameters (i.e., Ac, F, G), leading to a very difficult optimization
problem, whose solution is discussed next.

IV. Simultaneous Perturbation Stochastic
Approximation

Because of the intricate dependency of J and the variance
constraints on the optimization variables, computation of their
derivatives with respect to these variables is impossible analytically.
This recommends the application of certain stochastic optimization
techniques. Specifically, in this article, simultaneous perturbation
stochastic approximation (SPSA) [27], which has proven effective in
solving other complex problems [28], including optimization of
nondifferentiable functions [32], has been selected to solve the

Fig. 1 Two types of turns: a) level banked, and b) helical.

Table 1 Design variables and constraints

Design
variable

Nominal value Lower bound
Δxi∕xi

Upper bound
Δxi∕xi

c 0.5401 m −0.05 0.05
Kβ 48; 149 N · m∕rad −0.05 0.05
m 9.1 kg∕m −0.05 0.05
R 7.5 m −0.05 0.05
θtw −0.14 rad −0.05 0.05
Ω 27 rad∕s −0.05 0.05
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problem described in the previous section. SPSA has many advan-
tages. For example, SPSA uses only two evaluations of the objective
for the computation of the gradient [27]. Also, numerical experiments
indicated that SPSA is more efficient in solving many optimization
problems compared to other computationally expensive algorithms
like genetic algorithms and fast simulated annealing [33]. Moreover,
SPSA was also successful in solving constrained optimization
problems [34]. Finally, under certain conditions (see [27]) strong
convergence of SPSA has been theoretically proved. One issue with
theoretical guarantees for SPSA convergence is that the key condi-
tions (e.g., that the objective function must be three times
continuously differentiable and the third derivatives uniformly
bounded) are difficult to verify. Therefore, because in most practical
applications the objective is complicated and its derivatives are not
easily available, one directly applies the SPSA algorithm and
monitors its behavior. Another feature of SPSA is the inherent
randomness due to its stochastic nature. This issue is very easily
resolved by running SPSA several times and selecting the best
solution.
In this study, a modified version of the classical SPSA, which

accounts for upper and lower limit constraints on optimization
parameters, is developed as discussed next.

A. Simultaneous Perturbation Stochastic Approximation

Formulation

Let x denote the vector of optimization variables. In classical
SPSA, if x�k� is the estimate of x at the kth iteration, then

x�k�1� � x�k� − akg�k� (9)

where ak is a decreasing sequence of positive numbers, and g�k� is the
estimate of the objective’s gradient at x�k�, computed using a
simultaneous perturbation as follows. Let Δ�k� ∈ Rp be a vector of p
mutually independent mean-zero random variables fΔ�k�1 Δ�k�2
: : :Δ�k�pg satisfying certain conditions [32,35]. Then g�k� is

g�k� �
�
Γ� − Γ−

2dkΔ�k�1
· · ·

Γ� − Γ−

2dkΔ�k�p

�
T

(10)

where Γ� and Γ− are estimates of the objective evaluated at x�k� �
dkΔ�k� and x�k� − dkΔ�k�, respectively.
In this article a novel adaptive SPSA that accounts for the

constraints that optimization variables must be between lower and
upper limits (i.e., ximin

≤ xi ≤ ximax
) is developed to solve related

problems. All the perturbed vector elements, x�k� � dkΔ�k� and
x�k� − dkΔ�k�, are also required to be between the prescribed lower and
upper limits. Using these requirements and the guidelines provided in
[27] for the selection of sequencesak anddk, we chosedk as (see [10],
pages 187–188 for details)

dk � min

�
d∕kΘ; 0.95min

i
fminfηlig;minfηuigg

�
(11)

Here, ηl and ηu are vectors whose components are �x�k�i − xmini
�∕Δ�k�i

for each positiveΔ�k�i and �xmaxi
− x�k�i�∕Δ�k�i for each negativeΔ�k�i,

respectively. Likewise, we selected ak as

ak � min

�
a∕�S� k�λ; 0.95min

i
fmin�μil�;min�μiu�g

�
(12)

whereμl and μu are vectorswhose components are �x�k�i − xmini
�∕g�k�i

for each positive g�k�i and �x�k�i − xmaxi
�∕g�k�i for each negative g�k�i,

respectively. The other SPSA parameters d, a, λ, Θ, S are chosen
using guidelines provided in [27,36–38].

B. Solution Algorithm

We are now prepared to describe the algorithm used to solve the
simultaneous helicopter and control-system design problem of
Sec. III.

Step 1: Set k � 1 and choose initial values for the optimization
parameters, x � x�k�, and a specific flight condition (e.g., VA �
40 kt straight level flight).

Step 2: Compute Ap and Bp, design the corresponding OVC using
Eqs. (6 and 7), and obtain the current value of the objective Γk
using Eq. (8); note that Γk � Jk for OVC.

Step 3: Perturb x�k� to x�k� � dkΔ�k� and x�k� − dkΔ�k� and solve
the corresponding OVC problems to obtain Γ� and Γ−,
respectively. Then compute the approximate gradient,g�k�, using
Eq. (10) with dk given by Eq. (11).

Step 4: If kakg�k�k < δx, where ak is given by Eq. (12) and δx is the
minimum allowed variation of x, or k� 1 is greater than the
maximum number of iterations allowed, exit, else calculate
the next estimate of x, x�k�1�, using Eq. (9), set k � k� 1, and
return to step 2.

V. Results

A. Simultaneous Perturbation Stochastic Approximation Results

To investigate the performance of the previous algorithm on
simultaneous helicopter and control-system design, we first line-
arized our model for VA � 40 kt (20.58 m∕s), γFP � 0 rad, _ψA �
0 rad∕s (straight level flight). We then designed the corresponding
OVC for this linearized model. We shall further refer to this design
(i.e., the helicopter and the corresponding OVC) as “the nominal
system” (note that all the scenarios examined in this paper are
summarized inTableA.1). Clearly, this corresponds to the traditional,
sequential design approach. Next, we applied the algorithm (see
Sec. IV.B) to redesign the helicopter and the control system using
nominal values of helicopter parameters as initial conditions. The
resulting designwill be referred to as “the redesigned system”. For all
of the OVCs designed, we considered σ2 � 10−4� 1 1 0.1 �; recall
that these are variance constraints on helicopter Euler angles [see
Eq. (5)]. Small values for the output variance constraints are
recommended to achieve good overall behavior of the outputs.
Using SPSA parameters, S � 10, λ � 0.602, a � 100, d � 20,

Θ � 0.101, very fast convergence of the algorithm described in
Sec. IV.B was achieved (see Fig. 2). Furthermore, the control energy
corresponding to the redesigned system thus obtained was 33.3%
lower than the control energy of the nominal system. Table 1
summarizes the optimization parameters and their lower and upper
bounds while Table 2 gives their optimum values.
We remark that the fact that the algorithm is very effective in

decreasing the value of the objective J in the first several iterations
(see Fig. 2) is a characteristic of SPSA, ascertained in other complex
optimization problems [28]. This property of SPSA, in addition to the
fact that it uses fewer computations per iteration than other optimizers
[27], makes SPSA very attractive as a fast optimizer.

B. Evaluation of the Redesign Process for Energy Saving

To further evaluate the performance of the redesigned helicopter,
we linearized this helicopter’s model around different straight level
flight conditions, i.e., between VA � 1 kt (0.5145 m∕s) to 80 kts
(41.1565 m∕s). Then, at each flight condition, we designed the
corresponding OVC and computed its cost Jr. At the same flight
conditions, we also linearized the nominal helicopter (which corre-
sponds to the nominal design), designed the corresponding OVCs,
and computed the cost Jn. We then computed the relative variation of

Fig. 2 Control energy optimization using SPSA.
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the cost as%J � 100�Jn − Jr�∕Jn for each flight condition. Figure 3
shows the variation of %J with respect to VA. It is clear from Fig. 3
that, using the redesigned helicopter, considerable control energy is
saved for each flight condition. This is advantageous in practice
because it shows that, even though we optimized the design at a
single, particular flight condition, the helicopter obtained that way
has better performance than the nominal one across a wide flight
envelope.
Furthermore, we repeated the previous scenario for helical turns.

Specifically, we first considered the nominal helicopter, we assumed
that the helicopter velocity takes values betweenVA � 1 kt to 80 kts
and we computed the trim solutions for helical turns characterized by
VA, γFP � 0.1 rad and _ψA � 0.1 rad∕s. For each of these flight
conditions, we linearized the nominal helicopter model, designed the
corresponding OVCs, and computed the cost J. We then performed
the same study using, instead of the nominal helicopter, the rede-
signed one. In the end, we reached a similar conclusion: substantial
energy savings (around 30%) are obtained using the redesigned
helicopter.
To further convince ourselves of the advantages of simultaneous

helicopter and control-system design, we used two other flight
conditions to redesign the helicopter: VA � 1 kt and VA � 80 kts
(straight level flights). We used the same SPSA parameters as before

and obtained two different redesigned helicopters. We performed the
same analysis as before and arrived at very similar conclusions:
SPSA converges very fast, optimal design variables are very close to
the ones in Table 2, and the behavior of %J with respect to VA is
similar to the one in Fig. 3 [10]. Ultimately, and most importantly,
substantial energy savings across a wide flight envelope, which also
include maneuvering flights (e.g., helical turns), are achieved. It
should be emphasized that the energy savings reported herein are
obtained using linearized helicopter models. In practical applica-
tions, because of inherent helicopter nonlinearities, the real energy
savings can be slightly different from values computed using
linearized models.
This thorough analysis indicates that it is always recommended to

perform simultaneous helicopter and control-system design (i.e., the
control engineer should be involved early in the design process).
Even if a nominal helicopter is prescribed, substantial performance
improvement in terms of control energy can be achieved with very
small, tolerable changes in nominal parameters (around�5% like in
our examples). Furthermore, the previous analysis also shows that the
design process presented herein is robust; we reached almost similar
optimal designs and similar conclusions regarding the cost savings,
even though the flight conditions we linearized about were substan-
tially different. Therefore, implementing one design will be
satisfactory for a large set of operational conditions.

C. Closed-Loop Performance Comparison

After simultaneous design, we investigated the closed-loop system
performance of nominal and redesigned helicopters using the
nominal system and the redesigned system described in Sec. V.A. For
the discussion to follow, we shall also refer to the closed-loop system
that corresponds to the nominal system as the first closed-loop system
(i.e., the first closed-loop system is created using the OVC designed
for the nominal helicopter and coupled to the nominal helicopter).
Likewise, we shall refer to the closed-loop system that corresponds to
the redesigned system as the second closed-loop system (i.e., the
second closed-loop system is created using the OVC designed for the
redesigned helicopter and coupled to the redesigned helicopter).
In Figs. 4–6, responses of helicopter Euler angle states, linear

velocity states, and angular velocity states are given when the first
closed-loop system (solid line) and second closed-loop system
(dotted line) are both excited by white noise perturbations. In Figs. 7
and 8, responses of some blade flapping and lagging states (i.e.,
collective and two cyclics) are given for the first closed-loop system
(solid line) and second closed-loop system (dotted line). Note that
these states correspond to the essential dynamics captured by our
models. In Fig. 9, responses of all controls are given for the first
closed-loop system (solid line) and second closed-loop system
(dotted line).

Table 2 Optimum design variables

Design variable Optimum value Change Δxi∕xi
c 0.5662 m 0.04840
Kβ 50; 543.4498 N · m∕rad 0.04973
m 9.5400 kg∕m 0.04835
R 7.1258 m −0.04990
θtw −0.1470 rad 0.04969
Ω 25.6527 rad∕s −0.04990

Fig. 3 Relative energy saving with respect to VA (γFP � 0 rad,
_ψA � 0 rad∕s).

Fig. 4 Helicopter Euler angles responses before (nominal) and after redesign.
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From Fig. 4, it can be seen that, before and after redesign, the
qualitative (i.e., shape of the response) and quantitative (i.e.,
magnitude of the response) behaviors of helicopter Euler angles are
practically the same. This explains the fact that the variances of
outputs of interest (i.e., helicopter Euler angles) are very close and

satisfy constraints [Eq. (5)]. From Figs. 5 and 6, we ascertain that the
linear and angular velocity states do not experience catastrophic
behavior (i.e., fast and large variations) before and after redesign and
their qualitative behavior is similar. This good behavior is explained
by the exponentially stabilizing effect of OVC [10].

Fig. 5 Helicopter linear velocity responses before (nominal) and after redesign.

Fig. 6 Helicopter angular velocity responses before (nominal) and after redesign.

Fig. 7 Some helicopter blade flapping angles responses before (nominal) and after redesign.
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From Figs. 7 and 8, it can be easily concluded that blade flapping
and lagging angle states (e.g., β0, βc, βs, ζ0, ζc, ζs) do not experience
catastrophic behavior, and their qualitative behavior is similar before
and after simultaneous helicopter and control-system design. This
observation is also valid for differential flapping and lagging angle
states (i.e., βd and ζd [10]). This good behavior is also explained by
the exponentially stabilizing effect of OVC.
From Fig. 9, it can also be seen that the controls variations (i.e., θ0,

θc, θs, and θT) from their trim values slightly decrease after redesign
(for example, peak values of solid lines are smaller than those of
dotted lines), which explains the considerable reduction of control
energy. This result can be seen better in Fig. 10 (zoom for θ0, θc,
and θs).
Note that all of the responses plotted in Figs. 4–19 are deviations

from trim values in this article.

D. Robustness of the Redesigned System

For any engineering design, robustness is a key requirement that
guarantees that the systemhas the capability to operate properly in the

presence of uncertainties. Therefore, we also thoroughly investigated

closed-loop stability robustness properties of the redesigned

helicopter. The reader should also be reminded that OVC controllers

are LQG-based controllers, and LQGs do not have guaranteed

stability margins. Therefore, we focus on the robustness analysis of

designed OVCs in this article. For this purpose, the following

scenarios were considered.
1) The OVC controller designed for the nominal flight condition

(i.e., straight level flight at VA � 40 kts) is used for a different flight
condition (i.e., helical turn with VA � 80 kts, γFP � 0.1 rad, and
_ψA � 0.1 rad∕s, etc.). The key question is, “Does this controller
stabilize flight conditions that are different from the nominal one?”
2) A controller designed for an “inertially certain” model (i.e., a

model for which there are no variations in helicopter inertial
parameters) is used at the same flight condition on the same type of
model but which experiences uncertainties in all helicopter inertial
parameters (helicopter mass and helicopter inertia matrix elements).
The key question is, “Are the corresponding closed-loop systems
stable for these modeling uncertainties?”

Fig. 8 Some helicopter blade lead-lagging angles responses before (nominal) and after redesign.

Fig. 9 Helicopter control responses before (nominal) and after redesign.
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To perform this study, we created two more closed-loop systems,
referred to as the third and fourth closed-loop systems and defined as
follows. First, we designed the OVC controller for the redesigned
helicopter linearized around VA � 40 kts (straight level flight).
Then, we used this controller on the redesigned helicopter, which
experiences 25% reduction in all helicopter inertial quantities, and it
is linearized around a different flight condition, namely a helical turn
characterized by VA � 80 kts, γFP � 0.1 rad, and _ψA � 0.1 rad∕s.
We thus obtained the third closed-loop system. Note that this is a
challenging scenario for the controller because it operates on a system
that experiences modeling uncertainties (i.e., inertial parameters
variations) as well as qualitative and quantitative changes from the
flight condition the controller was designed for (i.e., from straight
level flight at VA � 40 kts to helical turn at VA � 80 kts). This
situation corresponds to using an “unaware controller” because there
is no information (provided, for example, by a supervisory control
system) about changes in the flight condition, which would enable
switching to a more appropriate controller. On the other hand, if
information is available about a substantial change in the flight
condition, switching between controllers can be performed. We refer
to this latter situation as one in which “aware controllers” are used.
This actually corresponds to the fourth closed-loop system
described next.
For the fourth closed-loop system, we first designed the OVC for

the redesigned helicopter, this time linearized around the helical turn
characterized by VA � 80 kts, γFP � 0.1 rad, and _ψA � 0.1 rad∕s.
Then, we used this controller on the redesigned helicopter, which
experiences 25% reduction in all helicopter inertial quantities and is
linearized around the same helical turn (i.e., with VA � 80 kts,
γFP � 0.1 rad, and _ψA � 0.1 rad∕s). As noted previously, this
situation is encountered when a supervisory decision system exists
that ensures that, for certain maneuvers, appropriate controllers are
used (i.e., aware controllers). In this scenario, the controller has to
mitigate only inertial parameters variations.
Closed-loop responses of some helicopter Euler angles (i.e., ϕA

and θA), longitudinal linear velocity (i.e., u), and lateral angular
velocity (i.e., q) are given in Fig. 11. Closed-loop responses of
collective and longitudinal flapping and lagging angles (i.e., β0, βc,
ζ0, and ζc) are given in Fig. 12. Closed-loop responses of all controls
(i.e., θ0, θc, θs, and θT) are given in Fig. 13. For all of these responses,
the third and fourth closed-loop systems are both excited by white

noise perturbations. In Figs. 11 and 12, the solid line shows the
responses of some states obtained using the third closed-loop system,
while the dotted line illustrates the responses of some states obtained
using the fourth closed-loop system. In Fig. 13, the solid line shows
the responses of controls obtained using the third closed-loop system,
while the dotted line illustrates the responses of controls obtained
using the fourth closed loop.
From Fig. 11, it can be easily seen that helicopter Euler angles

(e.g.,ϕA and θA) do not experience fast and largevariations regardless
of the type of controller used (i.e., aware or unaware OVC). Because
for the fourth closed-loop system (i.e., solid line), awareOVC is used,
the variances of outputs of interest (i.e., helicopter Euler angles)
satisfy the constraints in Eq. (5), and this explains the good behavior
observed. Because for the third closed-loop system (i.e., solid line),
unaware OVC is used, the variances of outputs of interest (i.e.,
helicopter Euler angles) do not satisfy the constraints in Eq. (5).
However, from simulations, it can be easily seen that, even in this
situation, helicopter Euler angles (e.g., ϕA and θA) do not experience
fast and large variations. This result and our extensive simulations
(see [10] for other examples) indicate that OVCs have good
robustness properties with respect to significant modeling uncer-
tainties (i.e., flight conditions and helicopter inertial parameters
variations).
From Fig. 11, it can also be seen that peak values of helicopter

Euler angles (e.g., ϕA and θA) obtained using the fourth closed-loop
system are smaller than the ones obtained using the third closed-loop
system, emphasizing the advantage of using aware controllers. Note
that similar results and conclusions are also valid for helicopter yaw
angle response [10]. FromFig. 11, it can be also concluded that linear
and angular velocities (e.g., u and q) do not experience catastrophic
behavior regardless of the fact that we use aware or unaware OVCs.
From Fig. 12, it can be concluded that other key helicopter states

(e.g., β0, βc, ζ0, ζc) do not experience catastrophic behavior
regardless of the fact that we use aware or unawareOVCs. In terms of
control responses, fromFig. 13, it can be concluded that all helicopter
controls (i.e., θ0, θc, θs, and θT) do not experience fast and large
variations regardless of the type of controller used (i.e., aware or
unaware). This result is expected for the fourth closed-loop system
because awareOVC is used for this example.Moreover, fromFig. 13,
it can also be easily seen that helicopter controls show good behavior
for the third closed-loop system. This result indicates that OVCs also

Fig. 10 Zoom for some helicopter control responses before (nominal) and after redesign.
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have good robustness in terms of control responses. However, the
peak values of most helicopter controls (i.e., θ0, θc, and θT) obtained
using the fourth closed-loop system are smaller than the ones
obtained using the third closed-loop system. This is also another
major advantage of using aware controllers.

E. Comprehensive Evaluation of the Redesign Process

To further investigate the efficiency of our simultaneous helicopter
and control-system design procedure, we modified the lower and
upper bounds on optimization parameters from �5% to �10%
variations from their nominal values. Then, we followed the same
steps given in Sec. V.A. The algorithm from Sec. IV.Bwas again very
effective in rapidly decreasing the value of the objective J in the first
several iterations (i.e., two iterations). Table 3 summarizes the new

lower and upper bounds on optimization parameters as well as
nominal and optimum values. The control energy corresponding to
the redesigned system thus obtained was 56.8% lower than the
control energy of the nominal system. Thus, we reach the same
conclusion like before: small changes in some helicopter parameters
may result in large savings in control energy if simultaneous
helicopter and control-system design is performed.
To comprehensively evaluate the redesigned helicopter, we

followed the same steps given in Sec. V.C. In Fig. 14, closed-loop
responses of some helicopter Euler angles (i.e., ϕA and θA),
longitudinal linear velocity (i.e., u), lateral angular velocity (i.e., q),
collective blade flapping angle (i.e., β0), and collective and lateral
cyclic main-rotor controls (i.e., θ0 and θs) are given when the fifth
closed-loop system, the one obtained using nominal helicopter and

Fig. 12 Some blade state responses for robustness study.

Fig. 11 Some fuselage state responses for robustness study.
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OVC designed for it (solid line), and sixth closed-loop system,
obtained using new redesigned helicopter and OVC designed for it
(dotted line), are both excited by white noise perturbations.
From Fig. 14, it can be ascertained that the conclusion regarding

closed-loop response results found using the first redesigned
helicopter (i.e., the one obtained in Sec. V.A) and the nominal
helicopter (see Sec. V.C) are still valid for the closed-loop responses
obtained using the new redesigned helicopter (i.e., the one obtained
using the values in Table 3). For example, the qualitative and
quantitative behaviors of helicopter Euler angles are the same before
and after redesign, and the variances of outputs of interest (i.e.,
helicopter Euler angles) are very close and satisfy constraints
[Eq. (5)]. Likewise, fuselage states and blade states do not experience
catastrophic behavior before and after redesign (their qualitative
behavior being similar), and the controls variations (e.g., θ0 and θs)
from their trim values decrease after redesign. In Fig. 15, comparison
of peak values of some controls between first redesigned helicopter
(i.e., the one obtained using the constraints in Table 2) and second
redesigned helicopter (i.e., the one obtained using the constraints in
Table 3) is illustrated. FromFig. 15, it can be again concluded that our
simultaneous helicopter and control-systemdesign idea is very useful
for control energy saving.
We also evaluated robustness of the new redesigned helicopter

using the same steps as in Sec. V.D. Closed-loop responses of some
helicopter Euler angles (i.e., ϕA and θA), longitudinal linear velocity
(i.e., u), lateral angular velocity (i.e., q), collective blade flapping
angle (i.e., β0), and collective and lateral cyclic main-rotor controls
(i.e., θ0 and θs) are given in Fig. 16. In Fig. 16, the solid line shows the
responses of some states and controls obtained using the seventh
closed-loop system, created using the unaware OVC and the new
redesigned helicopter, while the dotted line illustrates the responses

of controls obtained using the eighth closed-loop, created using the
aware OVC and the new redesigned helicopter.
From Fig. 16, it can be concluded that the observations regarding

robustness results found using the first redesigned helicopter (see
Sec. V.D) are still valid for the robustness of the new redesigned
helicopter. For example, any helicopter state (e.g., ϕA, θA, u, q, and
β0) does not experience catastrophic behavior regardless of the fact
that we use aware or unaware OVCs. The peak values of helicopter
Euler angles (e.g., ϕA and θA) obtained using the sixth closed-loop
system are smaller than the ones obtained using the fifth closed-loop
system. Helicopter controls (e.g., θ0 and θs) do not experience fast
and large variations regardless of the type of controller used (i.e.,
aware or unaware).

F. Maneuvering-Flight Results

We also investigated the efficiency of the simultaneous helicopter
and control-system design using maneuvering-flight conditions,
specifically level banked turn and helical turn. For this purpose, we
linearized our model around VA � 40 kts, γFP � 0 rad, and _ψA �
0.1 rad∕s (level banked turn). Then, we followed the same steps
given in Sec. V.A, allowing�10% variation in helicopter parameters
for this new redesigned helicopter. The results are summarized in
Table 4. The control energy corresponding to the redesigned system
thus obtainedwas 57.0% lower than the control energyof the nominal
system. The algorithm (see Sec. IV.B) is still very effective in rapidly
decreasing the value of the objective, J, for level banked turn. Then,
to comprehensively evaluate the new redesigned helicopter, we
followed the same steps given in Sec. V.C.
In Fig. 17, closed-loop responses of some helicopter Euler angles

(i.e., ϕA and θA), and collective and lateral cyclic main-rotor controls

Fig. 13 Helicopter control responses for robustness study.

Table 3 Design variables, nominal values, new constraints, and new optimum values

Design variable Nominal value Lower boundΔxi∕xi Upper boundΔxi∕xi New optimum value ChangeΔxi∕xi
c 0.5401 m −0.1 0.1 0.5941 m 0.09998
Kβ 48; 149 N · m∕rad −0.1 0.1 52; 483.5565 N · m∕rad 0.09002
m 9.1 kg∕m −0.1 0.1 10.0098 kg∕m 0.09998
R 7.5 m −0.1 0.1 6.7536 m −0.09952
θtw −0.14 rad −0.1 0.1 −0.1540 rad −0.09976
Ω 27 rad∕s −0.1 0.1 24.3 rad∕s −0.09999
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Fig. 14 Some helicopter state and control responses before (nominal) and after redesign (comprehensive evaluation).

Fig. 15 Zoom for some helicopter control responses after two redesigns.
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(i.e., θ0 and θs) are given when the ninth closed-loop system (i.e., the
one created using maneuvering nominal helicopter and OVC
designed for it, solid line) and the tenth closed-loop system (i.e., the
one created using maneuvering redesigned helicopter and OVC
designed for it, dotted line) are both excited by white noise
perturbations.
Figure 17 and our extensive analysis show that the observations

about the closed-loop responses reached using previous redesigned
helicopters (see Secs. V.C and V.E) are still valid for the closed-loop
responses obtained in this section. For example, the qualitative and

quantitative behaviors of helicopter Euler angles are the same before
and after redesign, and the variances of outputs of interest (i.e.,
helicopter Euler angles) are very close and satisfy constraints
[Eq. (5)]. The controls variations (e.g., θ0 and θs) from their trim
values decrease after redesign. This reduction can be seen better
in Fig. 18.
We also evaluated robustness of the redesigned helicopter obtained

in this section, using the same steps as in Sec. V.D. Closed-loop
responses of some helicopter Euler angles (i.e., ϕA and θA), and
collective and lateral cyclic main-rotor controls (i.e., θ0 and θs) are

Fig. 16 Some helicopter state and control responses for robustness study (comprehensive evaluation).

Table 4 Design variables, nominal values, constraints, and optimum values (level banked turn, VA � 40 kts,
γFP � 0 rad, and _ψA � rad∕s

Design variable Nominal value Lower boundΔxi∕xi Upper boundΔxi∕xi New optimum value ChangeΔxi∕xi
c 0.5401 m −0.1 0.1 0.5941 m 0.09998
Kβ 48; 149 N · m∕rad −0.1 0.1 52; 940.7885 N · m∕rad 0.09952
m 9.1 kg∕m −0.1 0.1 10.0098 kg∕m 0.09998
R 7.5 m −0.1 0.1 6.7501 m −0.09999
θtw −0.14 rad −0.1 0.1 −0.1260 rad −0.09998
Ω 27 rad∕s −0.1 0.1 24.3 rad∕s −0.09999
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given in Fig. 19. In Fig. 19, the solid line shows the responses of
some states and controls obtained using the 11th closed-loop system
(i.e., the one created using the unaware OVC and the redesigned
helicopter obtained using a level banked turn design point), while
dotted line illustrates the responses of controls obtained using
the 12th closed loop (i.e., the one created using the aware OVC and
the redesigned helicopter obtained using a level banked turn
design point).
From Fig. 19, it can be ascertained that the robustness conclusions

found using previous redesigned helicopters (see Secs. V.D and V.E)
are still valid for the robustness of this redesigned helicopter. For
example, the peak values of helicopter Euler angles (e.g., ϕA and θA)
obtained using the 12th closed-loop system are smaller than the ones
obtained using the 11th closed-loop system, and helicopter controls
(e.g., θ0 and θs) do not experience fast and large variations regardless
of the type of controller used (i.e., aware or unaware). We also
linearized our model around VA � 40 kts, γFP � 0.1 rad, and _ψA �
0.1 rad∕s (helical turn) and then followed the same steps in this
section and reached very similar conclusions.

An important observation regarding the practical implementation
of these results is necessary. Our approach is to simultaneously design
the helicopter and the controller using models linearized around
different operational conditions. A natural question is, “How would
one implement this idea when operational conditions change?” The
answer is provided by recent technological advances in the area of
morphing helicopter that inspired our work, for example [3–5,20–
26]. These advances enable changes in the helicopter parameters that
we use for design in our paper: blade length, chord length, flapping-
spring stiffness, twist, linear mass density, and main-rotor angular
speed. Therefore, when the operational conditions change, helicopter
parameters can be modified from optimal values corresponding to
one operational condition to optimal values corresponding to another
operational condition. In parallel, the controller will also change from
one optimal controller to another. It is clear that this scenario
corresponds to the gain scheduling idea that is so popular in control
design. Therefore, for implementation of our idea, we schedule both
the controller gains and the helicopter parameters to achieve optimal
flying conditions across a wide flight envelope.

Fig. 17 Some helicopter state and control responses before (nominal) and after redesign during maneuvering flight.

Fig. 18 Zoom for some control responses before (nominal) and after redesign during maneuvering flight.
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VI. Conclusions

Simultaneous helicopter and control-system design is investigated
to save control energy while output variance constraints are also
satisfied. Complex, control-oriented, physics-based helicopter
models are used for this purpose. An optimization algorithm that
solves the simultaneous design problem using a novel modified
stochastic optimization method is developed and illustrated on
straight level flights, level banked turns, and helical turns.
The aforementioned optimization algorithm is very effective in

rapidly decreasing the control energy. Considerable reduction
of control energy (i.e., around 30% for �5% parameter variation
and around 55% for �10% parameter variation) is obtained via
simultaneous design compared to the situation when a sequential
design approach (i.e., helicopter design followed by control-system
design) is used.Moreover, this substantial control energy reduction is
obtained using very small (i.e., �5% and �10%) changes in some
helicopter parameters such as blade length, blade chord length, blade
flapping-spring stiffness, blade twist, blade linear mass density, and
main-rotor angular speed. Such small changes are easily achievable
and nowadays technologically feasible. It should be emphasized that
the energy savings reported herein are obtained using linearized
helicopter models. In practical applications, because of inherent
helicopter nonlinearities, the real energy savings can be slightly
different from values computed using linearized models.
Furthermore, the qualitative behaviors of fuselage and blade states

before (i.e., when the sequential design approach is used) and after
redesign (i.e., when the simultaneous design approach is used) are
similar, and they do not display dangerous behaviors such as very
large amplitudes and fast oscillations. The outputs of interest (i.e.,
helicopter Euler angles) before and after redesign also display

qualitatively and quantitatively similar behaviors, while satisfying all
of the variance constraints. The peak values of helicopter controls
decrease after redesign, which explains the considerable reduction of
control energy observed when simultaneous helicopter and control-
system design is performed.
Last, our extensive analysis indicated that output variance-

constrained controllers, which are designed for the redesigned
helicopter, have very good robustness properties with respect to
variations in flight conditions as well as helicopter inertial properties.
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Table A1 Scenarios

SPSA number Design point Allowable change Evaluated Section

First SPSA 40 kt straight level flight �5%% 40 kt straight level flight Secs. V.A, V.B, V.C
First SPSA 40 kt straight level flight �5% 80 kt helical turn Sec. V.D
Second SPSA 40 kt straight level flight �10% 40 kt straight level flight Sec. V.E
Second SPSA 40 kt straight level flight �10% 80 kt helical turn Sec. V.E
Third SPSA 40 kt level banked turn �10% 40 kt level banked turn Sec. V.F
Third SPSA 40 kt level banked turn �10% 80 kt helical turn Sec. V.F
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